首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+。
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+。
admin
2018-12-29
55
问题
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+
。
选项
答案
对f(x)在x=c处应用泰勒公式,展开可得 f(x)=f(c)+f′(c)(x—c)+[*](x—c)
2
, (1) 其中ξ=c+θ(x—c),0<θ<1。 在(1)式中令x=0,则有 f(0)=f(c)+f′(c)(0—c)+[*](0—c)
2
,0<ξ
1
<c<1, 在(1)式中令x=1,则有 f(1)=f(c)+f′(c)(1—c)+[*](1—c)
2
,0<c<ξ
2
<1, 将上述的两个式子相减得到 f(1)—f(0)=f′(c)+[*][f″(ξ
2
)(1—c)
2
—f″(ξ
1
)c
2
], 因此 |f′(c)|=|f(1)—f(0)—[*][f″(ξ
2
)(1—c)
2
—f″(ξ
1
)c
2
} ≤|f(1)|+|f(0)|+[*]|f″(ξ
2
)|(1—c)
2
+[*]|f″(ξ
1
)|c
2
≤2a+[*](1—c)
2
+c
2
。 又因当c∈(0,1)时,有(1—c)
2
+c
2
≤1,所以|f′(c)|≤2a+[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/0PM4777K
0
考研数学一
相关试题推荐
设级数an条件收敛,则幂级数(x-2)n的收敛区间为______.
设曲线y=x2与y=4所围成的图形的面积为S,则下列各式中,错误的是()
设有连接点O(0,0)和A(1,1)的一段凸的曲线弧上任一点P(x,y),曲线弧所围图形的面积为x3,则曲线弧的方程为()
设函数f(x)在[2,+∞)上可导且f(2)=1,如果f(x)的反函数g(x)满足=x2f(x)+x,则f(4)=_____.
设函数f(x)在(0,+∞)内连续,且对一切的x、t∈(0,+∞)满足条件:∫1xtf(u)du=t∫1xf(u)du+x∫1tf(u)du.求函数f(x)的表达式.
设总体X服从指数分布,其密度函数为其中λ>0是未知参数,X1,X2,…,Xn为取自总体X的样本.求的最大似然估计量;
假设随机变量X和Y的联合概率密度为求X和Y的联合分布函数F(x,y);
商店销售10台洗衣机,其中有3台次品,7台正品.若已知已售出洗衣机4台,求从剩下的洗衣机中任选一台是正品的概率.
设随机变量X1,X2,X3相互独立且都服从参数为P的0-1分布,已知矩阵为正定矩阵的概率为.试求:参数p的值;
假设随机变量的分布函数为F(y)=1-e-y(y>0),F(y)=0(y≤0).考虑随机变量求X1和X2的联合概率分布.
随机试题
突发性事件的实质是()
下列哪种物质不能作为混悬剂的助悬剂
患儿,男,2岁。经常在入睡后出汗,有时白天也汗出较多。形体消瘦,精神倦怠,心烦少寐,时有低热、口干、手足心灼热,哭声无力,口唇淡红,舌质淡,可见花剥苔,脉细弱。治疗首选方剂是
A.进食一疼痛一缓解B.疼痛一排便一加重C.疼痛一进食一缓解D.疼痛一便意一缓解E.疼痛与饮食无关胃溃疡疼痛的规律是
某铁路工程项目根据工程量的分布情况,并考虑到铺轨前路基及桥隧工程施工期限短的特点,分为两个工区(区段),里程划分为DK0+000~DK75+293,DK75+293~DKl05+000。其中第一工区划分为3个施工单元:DKl4+800处一座特大桥;路基土石
下列有关盈余公积的提取和使用说法中,正确的有()。
我国社会主义道德建设的原则是()。
根据下列表格,请问下列哪个地区人口最少?()
Readthefollowingtextanddecidewhichanswerbestfitseachspace.Forquestions26-45,markoneletterA,B,CorDony
Thestormcausedseveredamage.
最新回复
(
0
)