首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+。
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+。
admin
2018-12-29
24
问题
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+
。
选项
答案
对f(x)在x=c处应用泰勒公式,展开可得 f(x)=f(c)+f′(c)(x—c)+[*](x—c)
2
, (1) 其中ξ=c+θ(x—c),0<θ<1。 在(1)式中令x=0,则有 f(0)=f(c)+f′(c)(0—c)+[*](0—c)
2
,0<ξ
1
<c<1, 在(1)式中令x=1,则有 f(1)=f(c)+f′(c)(1—c)+[*](1—c)
2
,0<c<ξ
2
<1, 将上述的两个式子相减得到 f(1)—f(0)=f′(c)+[*][f″(ξ
2
)(1—c)
2
—f″(ξ
1
)c
2
], 因此 |f′(c)|=|f(1)—f(0)—[*][f″(ξ
2
)(1—c)
2
—f″(ξ
1
)c
2
} ≤|f(1)|+|f(0)|+[*]|f″(ξ
2
)|(1—c)
2
+[*]|f″(ξ
1
)|c
2
≤2a+[*](1—c)
2
+c
2
。 又因当c∈(0,1)时,有(1—c)
2
+c
2
≤1,所以|f′(c)|≤2a+[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/0PM4777K
0
考研数学一
相关试题推荐
设线性方程组(Ⅰ)有非零公共解,则参数a=_________.
设有齐次线性方程组AX=0与BX=0,其中A,B为m×n矩阵,现有4个命题:①若AX=0的解均是BX=0的解,则R(A)≥R(B);②若R(A)≥R(B),则AX=0的解均是BX=0的解;③若AX=0与BX=0同解,则R(A)=R(B);④若R(A
设随机变量X和Y相互独立同分布.已知P{X=k}=pqk-1(k=1,2,3,…),其中0<p<1,q=1-p,则P{X=Y}等于()
设f(x)、g(x)均为连续的可微函数,且x=yf(xy)dx+xg(xy)dy.若存在二元可微函数u(x,y),使得du=z,求f(xy)一g(xy).
设f(x)在[-a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x-t)dt,f(x)=0,证明:存在一点ξ∈[-a,a],使得a4|f’’’(ξ)|=12∫-aa|f(x)|dx.
设总体X的密度函数为其中θ>0为未知参数,x1,X2,…,Xn为来自X的样本,比较这两个估计量,哪一个更有效?
设总体X的密度函数为其中θ>0为未知参数,x1,X2,…,Xn为来自X的样本,证明:都是θ的无偏估计量;
设A为三阶实对称矩阵,且存在可逆矩阵若kE+A*合同于单位矩阵,求k的取值范围.
设a0,a1,…,an-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使P-1AP=A.
某流水线上每个产品不合格的概率为p(0<p<1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为X,求X的数学期望E(X)和方差D(X).
随机试题
求函数的微分dy.
Thepeoplelivingintheseapartmentshavefree______tothatswimmingpool.
先天性鳃囊肿和瘘的最佳手术年龄为
功能清热燥湿、泻肝火的药是
甲公司向乙公司发出要约,出售一批建筑材料。要约发出后,甲公司因进货渠道发生困难而拟撤回要约。甲公司撤回要约的通知应当()到达乙公司。
记账凭证账务处理程序不适用于经营规模较大、转账业务事项较多而收、付款业务事项较少的单位。
下列各项中,属于代理记账机构业务范围的有()。
BasketballStatisticianHelpWantedTheAthleticDepartmentislookingforstudentstohelpassiststaffduringtheFall
根据下列材料回答问题。在西藏、广西、重庆和新疆这四个地区中,2006年被引用的国际论文篇数与2005年相比较,增长率最大的地区是()。
美国一家非常受欢迎的专卖草莓冰淇淋的冷饮店,最近把草莓冰淇淋的价格提高0.20美元,即从1.80美元提高到了200美元。可是,涨价后仅仅一星期,所有的服务员都不约而同地辞职了。以下哪项如果为真,能最好的解释上述现象?()
最新回复
(
0
)