首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+。
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+。
admin
2018-12-29
46
问题
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点。证明|f′(c)|≤2a+
。
选项
答案
对f(x)在x=c处应用泰勒公式,展开可得 f(x)=f(c)+f′(c)(x—c)+[*](x—c)
2
, (1) 其中ξ=c+θ(x—c),0<θ<1。 在(1)式中令x=0,则有 f(0)=f(c)+f′(c)(0—c)+[*](0—c)
2
,0<ξ
1
<c<1, 在(1)式中令x=1,则有 f(1)=f(c)+f′(c)(1—c)+[*](1—c)
2
,0<c<ξ
2
<1, 将上述的两个式子相减得到 f(1)—f(0)=f′(c)+[*][f″(ξ
2
)(1—c)
2
—f″(ξ
1
)c
2
], 因此 |f′(c)|=|f(1)—f(0)—[*][f″(ξ
2
)(1—c)
2
—f″(ξ
1
)c
2
} ≤|f(1)|+|f(0)|+[*]|f″(ξ
2
)|(1—c)
2
+[*]|f″(ξ
1
)|c
2
≤2a+[*](1—c)
2
+c
2
。 又因当c∈(0,1)时,有(1—c)
2
+c
2
≤1,所以|f′(c)|≤2a+[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/0PM4777K
0
考研数学一
相关试题推荐
已知β1,β2是非齐次线性方程组AX=b的两个不同的解,α1,α2是其对应的齐次线性方程组的基础解系,k1,k2是任意常数,则方程组AX=b的通解必是()
=_____.
设λ=2是非奇异矩阵A的一个特征值,则矩阵有一特征值为()
设A为4×5矩阵,且A的行向量组线性无关,则()
设α1=(1,0,-1,2),α2=(2,-1,-2,6),α3=(3,1,t,4),β=(4,-1,-5,10),已知β不能由α1,α2,α3线性表示,则t=()
已知关系式f’(一x)=x[f’(x)一1],试求函数f(x)的表达式.
已知函数y=y(x)满足关系式y’=x+y,且y(0)=1.试讨论级数的敛散性.
利用曲面的面积公式推导坐标xOy平面上光滑曲线y=f(x)≥0在区间[a,b]上绕x坐标轴旋转一周所得曲面的表面积的公式.
设随机变量X的绝对值不大于1,在事件{-1<X<1)出现的条件下,X在(-1,1)内任一子区间上取值的条件概率与该子区间的长度成正比.试求:X取负值的概率p.
设a0,a1,…,an-1是n个实数,方阵若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使P-1AP=A.
随机试题
新闻领导体制中社长制的优点是()
幂级数nxn的收敛半径R=__________.
此时最主要的护理诊断是当病人出现窒息时的处理不妥的是
应放在有色密盖瓶内的药物是
男,50岁。左下牙龈癌,行龈颌颈联合根治术并放置负压引流,其引流去除的最佳时机为24小时引流量不超过()
A.脾虚证B.肾阳虚证C.阴虚夹湿证D.湿热下注证E.热毒蕴结证带下量多,色黄呈脓性,质稠,有臭气,其证型为
中国公民甲与外国公民乙因合同纠纷诉至某市中级法院,法院判决乙败诉。判决生效后,甲欲请求乙所在国家的法院承认和执行该判决。关于甲可以利用的途径,下列哪些说法是正确的?(卷三2009年真题试卷第90题)
以少数学生为对象,在较短时间内进行课程教学,并把教学过程摄制成录像,课后再进行分析的教师训练方法称为()。
(2018年临沂)根据心理活动的倾向,瑞士心理学家荣格将性格分为内向趔和外向型,但多数人并非典型的内向型或外向型性格,而是介于二者之间的中间型c,
Itcanbeseenfromthepassagethat______.Theidealtitleforthispassageis______.
最新回复
(
0
)