首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=[a1,a2,…,an]T≠0,A=ααT,求可逆矩阵P,使P-1AP=A.
设α=[a1,a2,…,an]T≠0,A=ααT,求可逆矩阵P,使P-1AP=A.
admin
2018-09-20
53
问题
设α=[a
1
,a
2
,…,a
n
]
T
≠0,A=αα
T
,求可逆矩阵P,使P
-1
AP=A.
选项
答案
设A的任一特征值为λ,对应于λ的特征向量为ξ,则 Aξ=αα
T
ξ=λξ. ① 若α
T
ξ=0,则λξ=0,ξ≠0,故λ=0; 若α
T
ξ≠0,①式两端左边乘α
T
, α
T
αα
T
ξ=(α
T
α)α
T
ξ=λ(α
T
ξ). 因α
T
ξ≠0,故λ=α
T
α=[*] 再求A的对应于λ的特征向量. 当λ=0时, [*] 即解方程 a
1
x
1
+a
2
x
2
+…+a
n
x
n
=0, 得特征向量为(设a
1
≠0) ξ=[a
2
,一a
1
,0,…,0]
T
, ξ=[a
3
,0,-a
1
,0]
T
, …… ξ
n-1
=[a
n
,0,0,…,一a
1
]
T
[*] 由观察知ξ
n
=[a
1
,a
2
,…,a
n
]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/0RW4777K
0
考研数学三
相关试题推荐
设3阶实对称矩阵A的特征值,λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设A是3阶不可逆矩阵,α1,α2是Ax=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
设f(x)在[a,b]上有连续的导函数,且f(b)=0,当x∈[a,b]时|f’(x)|≤M,证明:
(u,y,z)具有连续偏导数,而x=rsinφcosθ,y=rsinφsinθ,z=rcosφ.(Ⅰ)若,试证明u仅为φ与θ的函数;(Ⅱ)若,试证明u仅为r的函数.
设3阶矩阵A的特征值λ=1,λ=2,λ=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T.(Ⅰ)将向量β=(1,1,3)T用α1,α2,α3线性表出:(Ⅱ)求Anβ.
设A是3阶实对称矩阵,特征值是0,1,2.如果λ=0与λ=1的特征向量分别是α1=(1,2,1)T与α2=(1,-1,1)T,则λ=2的特征向量是_______.
将一颗骰子重复投掷n次,随机变量X表示出现点数小于3的次数,Y表示出现点数不小于3的次数.求3X+Y与X-3Y的相关系数.
设A=其中ai≠aj(i≠j,i,j=1,2,…,n),则线性方程组ATx=B的解是______.
设α1=(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
随机试题
Excel2010中,利用组合键___________可以把选中的行隐藏,按Ctrl+0把选中的列隐藏。
引起左锁骨上窝淋巴结肿大的常见病症是()
患者男,35岁。因左上前牙反复肿胀、疼痛6个月,加重1周人院。查体见左上颌前庭沟丰满,可扪及乒乓球样感,有轻压痛。左、右上颌中切牙、左上侧切牙及尖牙I~Ⅱ度松动,变色。硬腭部未见膨隆。影像学结合临床诊断为左上颌肿物,需行口内进路肿物摘除术。术后患者术区
2019年3月某企业开始自行研发一项非专利技术,至2019年12月31日研发成功并达到预定可使用状态,累计研究支出为160万元,累计开发支出为500万元(其中符合资本化条件的支出为400万元)。该非专利技术使用寿命不能合理确定,假定不考虑其他因素,该业务导
资料(一)智达股份有限公司(以下简称智达股份)系2003年在原国有企业智达集团股份公司的基础上改制设立的,智达集团持有智达股份60%的股权。智达股份于2008年在上海证券交易所成功上市,为一般纳税人,适用的增值税税率为17%。智达股份从2008年
展览会的费用包括()。
在我国经济运行中,对资源配置起基础性作用的是()。
张某租用农贸市场一门面从事经营。因赵某提出该门面属于他而引起争议。工商局扣缴张某的营业执照,致使张某停业2个月之久。张某在工商局返还营业执照后,提出赔偿请求。下列属于国家赔偿范围的是()。
在数据库管理系统的6个方面的功能中,【】功能是数据库管理系统的核心。
Presentlyhemadethesuggestionthatthey(carryon)______theirconversationinFrench.
最新回复
(
0
)