设f(x)=∫1xe-t2dt,求∫01x2f(x)dx.

admin2019-09-04  41

问题 设f(x)=∫1xe-t2dt,求∫01x2f(x)dx.

选项

答案01x2f(x)dx=[*]∫01f(x)d(x3)=[*]x3f(x)|01-[*]∫01x3f’(x)dx =[*]∫01x3e-x2dx=[*]∫01te-tdt =[*](te-t01-∫01e-tdt)=[*](2e-1-1).

解析
转载请注明原文地址:https://kaotiyun.com/show/0ZJ4777K
0

最新回复(0)