首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次方程组(Ⅰ)为 且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. 当a为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.
设4元齐次方程组(Ⅰ)为 且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为 α1=(2,-1,a+2,1)T,α2=(-1,2,4,a+8)T. 当a为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.
admin
2020-04-30
39
问题
设4元齐次方程组(Ⅰ)为
且已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为
α
1
=(2,-1,a+2,1)
T
,α
2
=(-1,2,4,a+8)
T
.
当a为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.
选项
答案
由题设条件,方程组(Ⅱ)的全部解为 [*] 其中,k
1
,k
2
为任意常数. 将上式代入方程组(Ⅰ),得 [*] 要使方程组(Ⅰ)与(Ⅱ)有非零公共解,只需关于k
1
,k
2
的方程组有非零解,因为 [*] 所以当a≠-1时,方程组(Ⅰ)和(Ⅱ)无非零公共解。当a=-1时,方程组(*)有非零解,且k
1
,k
2
为不全为零的任意常数,此时可得方程组(Ⅰ)与(Ⅱ)的全部非零公共解为 [*] 其中,k
1
,k
2
为不全为零的任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/0bv4777K
0
考研数学一
相关试题推荐
(89年)设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)的解,c1,c2是任意常数,则该非齐次方程的通解是
某人向同一目标独立重复射击,每次射出命中目标的概率为P(0<p<1),则此人第4次射击恰好第2次命中目标的概率为
(2009年试题,一)设A,B均为二阶矩阵,A*,B*分别为A,曰的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为().
[2003年]已知函数f(x,y)在点(0,0)的某个邻域内连续,且{[f(x,y)-xy]/(x2+y2)2}=1,①则().
方程f(x)==0的全部根是_________.
向量组α1,α2,…,αm线性无关的充分必要条件是().
设L是正向圆周x2+y2=9,则曲线积分(2xy-2y)dx+(x2-4x)dy=_______。
下列广义积分发散的是().
如图13—1,直线r=c与曲线y=8χ-χ4在第一象限中交于两点A和B,且使得图中两个阴影区域的面积S1与S2相等.求常数c的值.
设X~N(0,1),Y=Xn(n为正整数),则ρXY=________.
随机试题
使用开式下击器震击解卡时,震击()次后,钻柱应紧扣一次。
A、性病B、癣病C、肺部感染D、多种内脏及皮肤、黏膜感染E、脑膜炎糠秕马拉色菌常引起
沉香的功效是
中度缺钠时,病人每千克体重缺氯化钠
在公共建筑设计中,功能分析与组织的核心问题是建筑的()
下列属于建设单位安全生产责任和义务的是()。
以下不是证券交易所会员大会的职权的是()。
H市M县人民政府为了对石膏产业进行转型升级,要求有关部门对小型的以及证照不全的石膏生产企业全部予以关停,其余五家证照齐全的大中型石膏生产企业合并,与引进的投资商张某共同组建Q公司,由Q公司独家生产石膏。Q公司的股权配置是:五家大中型石膏生产企业各占12%的
Her______shouldnotbeconfusedwithmiserliness;aslongasIhaveknownher,shehasalwaysbeenwillingtoassistthosewhoa
以下IP地址中,属于网络10.110.12.29/255.255.255.224的主机IP是_________。
最新回复
(
0
)