首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,A~B,其中B= (1)求A的特征值; (2)若ξ1=[1,1,0]T,ξ2=[2,2,0]T,ξ3=[0,2,1]T,ξ4=[5,-1,-3]T都是A的对应于λ1=λ2=0的特征向量,求A的对应于λ3的特征向量;
设A是3阶实对称矩阵,A~B,其中B= (1)求A的特征值; (2)若ξ1=[1,1,0]T,ξ2=[2,2,0]T,ξ3=[0,2,1]T,ξ4=[5,-1,-3]T都是A的对应于λ1=λ2=0的特征向量,求A的对应于λ3的特征向量;
admin
2018-09-20
38
问题
设A是3阶实对称矩阵,A~B,其中B=
(1)求A的特征值;
(2)若ξ
1
=[1,1,0]
T
,ξ
2
=[2,2,0]
T
,ξ
3
=[0,2,1]
T
,ξ
4
=[5,-1,-3]
T
都是A的对应于λ
1
=λ
2
=0的特征向量,求A的对应于λ
3
的特征向量;
(3)求矩阵A.
选项
答案
(1)由A~B,知A,B有相同的秩和特征值.显然r(B)=1,B有特征值λ
1
=λ
2
=0且λ
1
+λ
2
+λ
3
=[*]=1+4+9,得λ
3
=14.故A有特征值λ
1
=λ
2
=0,λ
3
=14. (2)λ
1
=λ
2
=0是A的二重特征值,对应的线性无关特征向量最多有两个,由题设知ξ
1
=[1,1,0]
T
,ξ
3
=[0,2,1]
T
线性无关(取ξ
1
,ξ
2
,ξ
3
,ξ
4
的极大线性无关组,不唯一),故取η
1
=ξ
1
,η
2
=ξ
3
为λ=0的线性无关特征向量,因A是实对称矩阵,将λ
3
=14对应的特征向量设为η
3
=[x
1
,x
2
,x
3
]
T
,则η
3
与η
1
,η
2
正交,即η
1
T
η
3
=0,η
2
T
η
3
=0.于是有 [*] 解得基础解系为η
3
=[1,一1,2]
T
,故λ
3
=14对应的特征向量为kη
3
(其中k为任意不为0的常数). (3)令P=[η
1
,η
2
,η
3
],则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/0kW4777K
0
考研数学三
相关试题推荐
设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A.
设A,B为三阶矩阵,且AB=A一B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P一1AP,P一1BP同时为对角矩阵.
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b.证明:≥(b一a)2.
微分方程xy’=+y(x>0)的通解为________.
设两曲线y=x2+ax+b与一2y=一1+xy3在点(一1,1)处相切,则a=_________,b=________.
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2个,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:第一次抽取后不放回.
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵,
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
求函数的单调区间,极值点及其图形的凹凸区间与拐点.
随机试题
国际政治
根据《劳动合同法》的规定,劳动者有下列哪些情形之一的,用人单位可以解除劳动合同()
最简单的甘油磷脂是
男,32岁。交通事故致头面部复合伤。伤后昏迷45min,造成吸人性窒息,正确的处理方法是
男,35岁。从高处跳下时,双下肢顿时感到无力。
私营企业主王某办公室的一台DVD播放机无法正常使用,遂通知工作人员刘某拿出去扔掉。刘某将该播放机修理好后拿回家使用。王某得知该播放机能够正常使用后,要求刘某返还。关于该播放机归属的说法,正确的是()。(2010年单项选择第5题)
下列不属于房地产经纪机构人力资源管理中的内部选拔的优点的是()。
在现行公开招标方式下,国债的销售价格是()。
辩证的否定观认为新事物必然取代旧事物,这是因为
若对n个元素进行直接插入排序,则进行第i趟排序过程前,有序表中的元素个数为______。
最新回复
(
0
)