首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1=aχ+2by+3c=0, l2=bχ+2cy+3a=0, l3=cχ+2ay+3b=0, 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条不同直线的方程分别为 l1=aχ+2by+3c=0, l2=bχ+2cy+3a=0, l3=cχ+2ay+3b=0, 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2016-05-09
72
问题
已知平面上三条不同直线的方程分别为
l
1
=aχ+2by+3c=0,
l
2
=bχ+2cy+3a=0,
l
3
=cχ+2ay+3b=0,
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
必要性:设三条直线l
1
,l
2
,l
3
交于一点,则其线性方程组 [*] 有唯一解,故系数矩阵A=[*]与增广矩阵[*]的秩均为2,于是[*]=0。 因为[*] =6(a+b+c)(a
2
+b
2
+c
2
-ab-ac-bc) 3(a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
], 但根据题设可知(a-b)
2
+(b-c)
2
+(c-a)
2
≠0,故a+b+c=0. 充分性:由a+b+c=0,则从必要性的证明中可知,[*]=0,故r([*])<3.由于 [*] 故r(A)=2.于是, r(A)=r([*])=2. 因此方程组(*)有唯一解,即三直线l
1
,l
2
,l
3
交于一点.
解析
转载请注明原文地址:https://kaotiyun.com/show/0rw4777K
0
考研数学一
相关试题推荐
设f(x)有连续的导数,f(0)=0且fˊ(0)=b,若函数在x=0处连续,则常数A=_______.
设f(χ)=则f(χ)在χ=0处().
[*]
设A=可逆,a=(1,b,1)T(b>0)满足A*a=λa,A*是A的伴随矩阵求a,b,λ的值
设方程有形如z=φ(r)=φ(y/x)的解,且满足φ(1)=0,φ’(1)=1,求z-φ(y/x)的表达式
假设A是n阶方阵,其秩(A)=r<n,那么在A的n个行向量中().
行列式|A|非零的充要条件是().
设二次型f(x1,x2,x3)=x12+x22+x32+2ax1x2+2ax1x3+2ax2x3经可逆性变换得g(y1,y2,y3)=y12+y22+4y32+2y1y2.求a的值;
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(层为n阶单位矩阵).
随机试题
行政改革的内容主要有【】
新生男婴,因“生后6小时内呕吐4次”入院诊治。出生后30分钟后即开始呕吐,尚未开奶。呕吐物为黏液及咖啡色样液体,伴肢端发冷、发花。查体:体温352~C,呼吸60次/min,心率165次/min,反应差,有呻吟,面色苍白,腰骶部皮肤有散在皮下出血点。双肺呼吸
有关脾破裂的临床表现和体征特点,正确的是
不符合胶片保存条件的是
用坩埚炉可熔炼()。
权益法下,下列各项不会引起长期股权投资账面价值变动的有()。
一般来说,被广泛应用的做法是将企业按其规模划分为()
()是中华人民共和国第一任公安部部长。
在()的情况下,被代理人死亡后委托代理人实施的代理行为有效。
Ifyouknowexactlywhatyouwant,thebestroutetoajobistogetspecializedtraining.Arecentsurveyshowsthatcompaniesl
最新回复
(
0
)