首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令 求随机变量(X1,X2)的联合概率分布.
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令 求随机变量(X1,X2)的联合概率分布.
admin
2017-08-07
86
问题
设随机变量Y
i
(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令
求随机变量(X
1
,X
2
)的联合概率分布.
选项
答案
易见随机变量(X
1
,X
2
)是离散型的,它的全部可能取值为(0,0),(0,1),(1,0),(1,1).现在要计算出取各相应值的概率。注意到事件Y
1
,Y
2
,Y
3
相互独立且服从同参数p的0一1分布,因此它们的和Y
1
+Y
2
+Y
3
[*]服从二项分布B(3,p).于是 P{X
1
=0,X
2
=0} =P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
≠2} =P{Y=0}+P{Y=3}=q
3
+p
3
, [*] P{X
1
=0,X
2
=1}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
=2} =P{Y=2}=3p
2
q, P{X
1
=1,X
2
=0} =P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
≠2}=P{y=1} =3pq
2
, P{X
1
=1,X
2
=1}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
=2}=P{[*]}=0. 由上计算可知(X
1
,X
2
)的联合概率分布为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/0sr4777K
0
考研数学一
相关试题推荐
(2005年试题,19)设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.求函数φ(y)的表达式.
(2005年试题,17)如图1—3—2所示,曲线c的方程为y=f(x),A(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分
(2004年试题,一)设随机变量X服从参数为λ的指数分布,则=__________.
(2004年试题,二)设随机变量X服从正态分布N(0,1),对给定的α(0
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为求A;
(2012年试题,三)已知二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求正交变换x=Qy将f化为标准形.
(2011年试题,21)A为三阶实对称矩阵,A的秩为2,即rA=2,且求矩阵A.
(2005年试题,23)设X1,X2,…,Xn(n>2)为来自总体N(0,1)的简单随机样本,为样本均值,记求:Y1与Y1=n的协方差Cov(Y1,Yn).
(1997年试题,八)A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
设A是n阶正定矩阵,x是n维列向量,E是n阶单位阵,记写出二次型f=|W|的矩阵表达式,并讨论f的正定性.
随机试题
Menhavetraveledeversincetheyfirstappearedontheearth.Inprimitivetimestheydidnottravelforpleasurebuttofi
慢性呼吸衰竭患者发生院内获得性支气管-肺部感染的最多见的病原菌有
关于小肠的描述,正确的是
粉末中可见腺毛的药材为
背景某机电安装公司承接一项炼油厂的塔体群安装工程,工程内容包括:各类塔体就位、各类管道、自动控制和绝热工程等。其中最高塔体为42m,最重塔体102t。合同工期为三个月,合同约定:如果合同工期违约一天罚款10000元,如每提前一天奖励5000元。
证券公司申请保荐机构资格应当具备的条件包括:符合保荐代表人资格条件的从业人员不少于2人。()
某工业企业本期对外提供运输劳务收入30万元,营业税税率为3%.,同期对外出租一项固定资产取得收入20万元,营业税税率为5%.。上述业务中与营业税相关的会计分录为()。
甲公司属于增值税一般纳税人,适用的增值税税率为16%,商品售价和原材料中均不含有增值税,假定销售商品和原材料均符合收入确认条件,成本在确认收入时逐笔结转,甲公司2019年1月发生如下交易和事项:(1)1月5日,向乙公司销售商品一批,价款为150万元,已办
【2016广东一类NO.4】如果仅仅将农村示范点建设成供人参观、应对检查的门面工程来扩造,则与示范点建设初衷__________。填入画横线部分最恰当的一项是:
我国公民取得国家赔偿的情况包括( )。
最新回复
(
0
)