首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令 求随机变量(X1,X2)的联合概率分布.
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令 求随机变量(X1,X2)的联合概率分布.
admin
2017-08-07
51
问题
设随机变量Y
i
(i=1,2,3)相互独立,并且都服从参数为p的0—1分布.令
求随机变量(X
1
,X
2
)的联合概率分布.
选项
答案
易见随机变量(X
1
,X
2
)是离散型的,它的全部可能取值为(0,0),(0,1),(1,0),(1,1).现在要计算出取各相应值的概率。注意到事件Y
1
,Y
2
,Y
3
相互独立且服从同参数p的0一1分布,因此它们的和Y
1
+Y
2
+Y
3
[*]服从二项分布B(3,p).于是 P{X
1
=0,X
2
=0} =P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
≠2} =P{Y=0}+P{Y=3}=q
3
+p
3
, [*] P{X
1
=0,X
2
=1}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
=2} =P{Y=2}=3p
2
q, P{X
1
=1,X
2
=0} =P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
≠2}=P{y=1} =3pq
2
, P{X
1
=1,X
2
=1}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
=2}=P{[*]}=0. 由上计算可知(X
1
,X
2
)的联合概率分布为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/0sr4777K
0
考研数学一
相关试题推荐
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=().
(2009年试题,19)计算曲面积分其中∑是曲面2x2+2y2+z2=4的外侧.
(2003年试题,六)某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而做功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0),汽锤第一次击打将桩打进地下am,根据设计方案,要求汽锤每次击打桩时所做的功
(1997年试题,九)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.没X为途中遇到红灯的次数,求随机变最X的分布律、分布函数和数学期望.
(2005年试题,20)已知二次型f(x1,x2,x3)=(1—a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解.
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵.验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2012年试题,三)设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数且σ>0.设Z=X—Y证明[*]为σ2的无偏估计量.
已知三元二次型xTAx的平方项系数均为α,设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
设X服从参数为λ的指数分布,Y=min(X,2}.(1)求Y的分布函数;(2)求P{Y=2);(3)判断Y是否为连续型随机变量;(4)在{Y=2)的条件下,求{X>3}的概率.
一民航班车上有20名旅客,自机场开出,旅客有10个车站可以下车,如到达一个车站没有旅客下车就不停车,以X表示停车次数,求E(X)(设每位旅客下车是等可能的).
随机试题
公共关系部门附属于哪一类部门会贬低公共关系在组织中的地位()
以下关于高血压的病因叙述正确的是
关于静脉补钾,下列说法错误的是
下列符合起诉条件,能够提起自诉的是:()
下列关于建筑业营业税纳税方法中,说法正确的有()。
行政回避是指行政机关的公务员在行使职权过程中,因与其处理的法律事务有利害关系,为保证实体处理结果和程序进展的公平性,依法终止其职务的行使并由他人代理的一种程序法律制度。根据上述定义,下列哪种情况违反了行政回避的规定?()
实证经济学,是回答()的经济学。
简述所有权的特征。
根据汉字国标GB2312-80的规定,存储一个汉字的内码需用的字节个数是()。
HowtoapproachReadingTestPartFive•ThispartoftheReadingTesttestsyourgrammar.•Readthewholetextquicklytofind
最新回复
(
0
)