首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(05年)设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. (Ⅰ)计算PTDP,其中P=; (Ⅱ)利用(Ⅰ)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
(05年)设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. (Ⅰ)计算PTDP,其中P=; (Ⅱ)利用(Ⅰ)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
admin
2017-05-26
56
问题
(05年)设D=
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
(Ⅰ)计算P
T
DP,其中P=
;
(Ⅱ)利用(Ⅰ)的结果判断矩阵B-C
T
A
-1
C是否为正定矩阵,并证明你的结论.
选项
答案
[*] (Ⅱ)矩阵B-C
T
A
-1
C是正定矩阵.证明如下: 由(Ⅰ)的结果可知,矩阵D合同于矩阵 [*] 又D为正定矩阵,可知矩阵M为正定矩阵. 因矩阵M为对称矩阵,故B-C
T
A
-1
C为对称矩阵.对X=[*]及任意的Y=(y
1
,y
2
,…,y
n
)
T
≠0,由M正定,有 [*] 即Y
T
(B-C
T
A)Y>0.故B-C
T
A
-1
C为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/0tH4777K
0
考研数学三
相关试题推荐
向量场u(x,y,z)=xy2i+yexj+xIn(1+z2)k在点P(1,1,0)处的散度divu=_____.
微分方程y"+y=cosx的一个特解的形式为y"=().
设F(x)在闭区间[0,c]上连续,其导数F’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:F(a+b)≤F(a)+F(b),其中常数,a,b满足条件0≤a≤b≤a+b≤c.
设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记(Ⅱ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=l时,求D(T).
设f(x)在[0,1]上二阶可导且f’’(x)<0,证明:
设三阶矩阵A=,三维列向量a=(a,1,1)T.已知Aa与a线性相关,则a_________.
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2-8x2x3,为标准形.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
已知三元二次型xTAx的平方项系数均为0,设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
随机试题
患者女性,21岁,近1年来厌食、呕吐,伴闭经。查体:消瘦,心肺无异常,腹软,无压痛,肝脾无异常。神经系统查体无异常。超声及胃镜检查无异常。最适合的治疗为
下列哪些是感染性休克扩容治疗达到要求的指标
关于发回重审,下列哪一说法是不正确的?
“信息传输的数字化和电子化”可提高数据传输的(),使数据传输不受距离限制并可提高数据传输的保真度和保密性。
企业利用留存收益方式筹集到的资金是()。
()不具有法律效力。
读我国某区域图,回答问题。图示区域县界划分的主要依据是()。
下列关于网页的说法正确的是()。
南朝寒人地位提高的主要表现是()。①寒人典掌机要②寒人执掌兵权③寒人出任地方典签④寒人出任地方中正官⑤寒人社会地位超过了士族
如图所示的数据模型属于()。
最新回复
(
0
)