首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数y= f(x)对一切x满足xf "(x)+3x[f’(x)]2=1-e-x,若f’(x0)=0(x0≠0),则________。
已知函数y= f(x)对一切x满足xf "(x)+3x[f’(x)]2=1-e-x,若f’(x0)=0(x0≠0),则________。
admin
2022-09-05
41
问题
已知函数y= f(x)对一切x满足xf "(x)+3x[f’(x)]
2
=1-e
-x
,若f’(x
0
)=0(x
0
≠0),则________。
选项
A、f(x
0
)是f(x)的极大值
B、f(x
0
)是f(x)的极小值
C、(x
0
,f(x
0
))是曲线y=f(x)的拐点
D、f(x
0
)不是f(x)的极值,(x
0
,f(x
0
))也不是y=f(x)的拐点
答案
B
解析
由方程xf"(x)+3x[f’(x)]
2
=1-e
-x
得
所以f(x)在x
0
取得极小值。
转载请注明原文地址:https://kaotiyun.com/show/0uR4777K
0
考研数学三
相关试题推荐
证明:当x>0时,(x2-1)lnx≥(x-1)2.
设f(x)在x0的邻域内四阶可导,且|f(4)(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有|f"(x0)-≤(x-x0)2,其中x’为x关于x0的对称点.
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=f(x-t)dt,G(x)=xg(xt)dt,则当x→0时,F(x)是G(x)的().
议{un},{cn}为正项数列,证明:若对一切正整数n满足cnun-cn+1un+1,且发散,则un也发散;
设二次型f(x1,x2,x3)=2x12+ax22+2x32+2x1x2-2bx1x3+2x2x3经过正交变换化3y12+3y22。求a,b的值;
设f(x)为可导的偶函数,满足,则曲线y=f(x)在点(-1,f(-1))处的切线方程为__________。
已知随机变量X的概率密度为fX(x)=。求a的值;
求球体x2+y2+z2=4a2被柱面x2+y2=2ax(a>0)所截得的含在圆柱面内的那部分立体的体积.
求下列不定积分:
设x→0时,(1+sinx)x一1是比xtanxn低阶的无穷小,而xtanxn是比(esin2x一1)ln(1+x2)低阶的无穷小,则正整数n等于()
随机试题
生用活血通经,炒炭凉血止血的药物是
博學之,審問之,慎思之,明辨之,篤行之。篤:
常规的B型超声是指
女性,30岁,颈部增粗,伴食欲亢进、消瘦、手颤、怕热、多汗半年,以原发性甲亢收入院。查体:眼球突出,眼裂增大,双侧甲状腺弥漫性肿大,质软、可触及震颤,闻及血管杂音。血压140/90mmHg,脉搏120次/分,准备手术治疗。该患者术前准备必须应用的药物是
慢粒最突出的体征为
8月6日18时,驾驶员甲驾驶装满液氯的槽罐车驶入某高速公路B56段,20时许,槽罐车与驾驶员乙驾驶的货车相撞,导致槽罐车撞坏,槽罐破裂,液氯泄露,造成除驾驶员甲之外的两车其他人员全部死亡。撞车事故发生后,驾驶员甲不顾槽罐车严重损坏,液氯已开始外泄的危险情况
根据《票据法》规定,允许背书转让的票据有( )。
把f(x,y)dxdy写成极坐标的累次积分,其中D={(x,y)|0≤x≤1,0≤y≤x}.
Onewayofimprovingone’swritingistogetintothehabitofkeepingarecordofyourobservations,ofstoring【46】inanote-b
Parents’Homework:FindPerfectTeachersforKidsTomiHalldidwhatshecouldtolobbyforthebestteachersforhertwoch
最新回复
(
0
)