首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
admin
2022-04-02
370
问题
设齐次线性方程组
其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
选项
答案
D=[*]=[a+(n-1)b](a-b)
n-1
. (1)当a≠b,a≠(1-n)b时,方程组只有零解; (2)当a=b时,方程组的同解方程组为x
1
,x
2
,…,x
n
=0,其通解为x=k
1
(-1,1,0,…,0)
T
+k
2
(-1,0,1,…,0)
T
+…+k
n-1
(-1,0,…,0,1)
T
(k
1
,k
2
,…,k
n-1
为任意常数); (3)令A=[*]当a=(1-n)b时,r(A)=n-1,显然(1,1,…,1)
T
为方程组的一个解,故方程组的通解为X=k(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/11R4777K
0
考研数学三
相关试题推荐
没向量组(I):a1,a2,…,an(Ⅱ):a1,a2,…,an-1则必有().
设f(x)是[0,1]上单调减少的正值连续函数,证明∫01xf2(x)dx.∫01f3(x)dx≥∫01f3(x)dx.∫01f2(x)dx,即要证I=∫01f2(x)dx.∫01f3(x)dx一∫01xf3(x)dx.∫01f2(x
设X1,X2,…,Xn来自正态总体X的简单随机样本,且Y1=(X1+X2+…+X6)/6,Y2=(X7+X8+X9)/3,证明统计量Z服从自由度为2的t分布.
设f(x),g(x)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫ξbg(z)dx=g(ξ)∫aξf(x)dx.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵Λ,使得QTAQ=Λ。
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.求方程组(I)的一个基础解系;
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:估计数据个数n满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数规.
已知三元二次型XTAX经正交变换化为2y12-y22-y32,又知矩阵B满足矩阵方程BA-1=2AB+4E,且A*α=α,其中α=[1,1,-1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
设a0,a1,an-1是n个实数,方阵(1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;(2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使Pλ1AP=A.
随机试题
患儿女,5岁,有鼻塞、流清鼻涕,偶有打喷嚏,伴耳闷、张嘴呼吸半年。鼻镜检查见:鼻黏膜苍白水肿,鼻道有较多的清水样分泌物。该患儿应如何预防此病的发作
如果A为"Boolean"型数据,则下列赋值语句正确的是( )。
从现代农业的发展规律来看,()是推动农业发展、提高农业生产力水平的基本动力。
喹诺酮类抗菌药的主要作用机制是
夏季某牛场的3~4岁黑白花奶牛,突发体温升高,食欲、反刍减退、产奶量下降,呼吸急促、大量流涎,部分病牛后躯僵硬,不愿移动。该病最为合适的治疗方法是
心阴虚之虚劳治宜肝血虚之虚劳治宜
对于砌体结构,现浇钢筋混凝土楼、屋盖房屋,设置顶层圈梁,主要是在下列哪一种情况发生时起作用?
在Word的编辑状态,文档窗口显示出水平标尺,则当前的视图方式()。
编写教科书和教师进行教学的直接依据是()。
Thingshavechangedinyourlife.Mostnotably,youarenolongeremployed.Perhapsyou’vebeen【B1】______yourformerworkplace.
最新回复
(
0
)