首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an为n个n维列向量,证明:a1,a2,…,an线性无关的充分必要条件是≠0
设a1,a2,…,an为n个n维列向量,证明:a1,a2,…,an线性无关的充分必要条件是≠0
admin
2019-11-25
48
问题
设a
1
,a
2
,…,a
n
为n个n维列向量,证明:a
1
,a
2
,…,a
n
线性无关的充分必要条件是
≠0
选项
答案
令A=(a
1
,a
2
,…,a
n
),A
T
A=[*],r(A)=r(A
T
A),向量组a
1
,a
2
,…,a
n
线性无关的充分必要条件是r(A)=n,即r(A
T
A)=n或|A
T
A|≠0,从而a
1
,a
2
,…,a
n
线性无关的充分必要条件是[*]≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/19D4777K
0
考研数学三
相关试题推荐
设f(x)在(一∞,+∞)内连续,以T为周期,证明:(1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数);(2)∫0xf(t)dt以T为周期∫0Tf(x)dx=0;(3)∫f(x)dx(即f(x)的全体原函数)周期
设向量组(I)与向量组(Ⅱ),若(I)可由(Ⅱ)线性表示,且r(I)=r(Ⅱ)=r.证明:(I)与(Ⅱ)等价.
微分方程y"+y’+y=的一个特解应具有形式(其中a,b为常数)()
设方程+(a+sin2x)y=0的全部解均以π为周期,则常数a=_________________________。
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
对于任意二个随机变量X和Y,与命题“X和Y不相关”不等价的是().
设A,B为同阶方阵。举一个二阶方阵的例子说明(I)的逆命题不成立;
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f’"(x)|≤M3,其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
随机试题
磁粉探伤只适用于()。
委托辩护
下列哪项引起腹式呼吸减弱()
急性失血时最先出现的调节反应是()
作用偏于下焦,善清相火,退虚热,除下焦湿热的药物是
偿债备付率和总投资收益率两个经济评价指标都是()。
下列与可供出售金融资产相关的价值变动中,应当直接计入发生当期损益的是()。(2014年)
新时期改革开放最根本的目的是()
在VisualBasic中,不能关闭的窗口是
Thesalesmanisdemonstratingthenewfaxmachinetoacustomer.
最新回复
(
0
)