首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an为n个n维列向量,证明:a1,a2,…,an线性无关的充分必要条件是≠0
设a1,a2,…,an为n个n维列向量,证明:a1,a2,…,an线性无关的充分必要条件是≠0
admin
2019-11-25
46
问题
设a
1
,a
2
,…,a
n
为n个n维列向量,证明:a
1
,a
2
,…,a
n
线性无关的充分必要条件是
≠0
选项
答案
令A=(a
1
,a
2
,…,a
n
),A
T
A=[*],r(A)=r(A
T
A),向量组a
1
,a
2
,…,a
n
线性无关的充分必要条件是r(A)=n,即r(A
T
A)=n或|A
T
A|≠0,从而a
1
,a
2
,…,a
n
线性无关的充分必要条件是[*]≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/19D4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续且严格单调增加.证明:(a+b)∫abf(x)dx<2∫abxf(x)dx.
设函数f(x)在[0,1]上连续,在(0,1)内大于零,并且满足xf’(x)=f(x)+(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设A是n阶可逆矩阵,将A的第i行和第j行对换得到的矩阵记为B.证明B可逆,并推导A-1和B-1的关系.
设A是n阶可逆方阵(n≥2),A*是A的伴随矩阵,则(A*)*=()
a为什么数时二次型x12+3x22+2x32+2ax2x3可用可逆线性变量替换化为2y12一3y22+5y32?
设电子管寿命X的概率密度为若一台收音机上装有三个这种电子管,求:使用的最初150小时内,至少有两个电子管被烧坏的概率;
设A,B为3阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=________.
求极限=_______.
(1)取εn=1,由[*]=0,根据极限的定义,存在N>0,当n>N时,[*]收敛(收敛级数去掉有限项不改变敛散性),由比较审敛法得[*]收敛(收敛级数添加有限项不改变敛散性).(2)根据(1),当n>N时,有0≤an<bn,因为[*]发散,由比较审敛法
以下3个命题:①若数列{un}收敛于A,则其任意子数列必定收敛于A;②若单调数列{xn}的某一子数列收敛于A,则该数列必定收敛于A;③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A.正确的个数为()
随机试题
简述常见的公共问题提出主体。
下列哪些激素可与核受体结合而调节转录过程
下列病证除哪项外,均可用防风治疗
患者,男,51岁。患胃癌2年。现症见脘痛剧烈,痛处固定,拒按,上腹肿块,肌肤甲错,眼眶黯黑,舌质紫暗,舌下脉络紫胀,脉弦涩。实验室检查:大便隐血试验示弱阳性。自服三七粉止血。治疗应首选
2014年1月1日,甲公司以1800万元自非关联方购人乙公司100%有表决权的股份,取得对乙公司的控制权;乙公司当日可辨认净资产的账面价值和公允价值均为1500万元。2015年度,乙公司以当年1月1日可辨认资产公允价值为基础计算实现的净利润为125万元
China’stradesurpluswiththeUSaccountedfor73percentofitstotalsurpluslastyear,butChinahadatrade______withother
京剧演员(),工武生,有“武生宗师”之盛誉。
宽带ISDN的协议分为几个面和几个层?()
UnpopularSubjects?Isthereaplaceintoday’ssocietyforthestudyofuselesssubjectsinouruniversities?Justover100yea
James:How’sKellydoing?Joan:______
最新回复
(
0
)