首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次方程组(I) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ) 的通解.
设齐次方程组(I) 有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T. 证明A的行向量组是齐次方程组(Ⅱ) 的通解.
admin
2018-11-20
79
问题
设齐次方程组(I)
有一个基础解系β
1
=(b
11
,b
12
,…,b
1×2n
)
T
,β
2
=(b
21
,b
22
,…,b
2×2n
)
T
,…,β
n
=(b
n1
,b
n2
,…,b
n×2n
)
T
.
证明A的行向量组是齐次方程组(Ⅱ)
的通解.
选项
答案
分别记A和B为(I)和(Ⅱ)的系数矩阵. (I)的未知量有2n个,它的基础解系含有n个解,则r(A)=n,即A的行向量组α
1
,α
2
,…,α
n
线性无关. 由于β
1
,…,β
n
都是(I)的解,有AB
T
=(Aβ
1
,Aβ
2
,…,Aβ
n
)=0,转置得BA
T
=0,即Bα
i
T
=0,i=1,…,n.于是,α
1
,α
2
,…,α
n
是(Ⅱ)的n个线性无关的解.又因为r(B)=n,(Ⅱ)也有2n个未知量,2n一r(B)=n.所以α
1
,α
2
,…,α
n
是(Ⅱ)的一个基础解系.从而(Ⅱ)的通解为 c
1
α
1
+c
2
α
2
+…+c
n
α
n
,c
1
,c
2
,…,c
n
可取任意数.
解析
转载请注明原文地址:https://kaotiyun.com/show/I5W4777K
0
考研数学三
相关试题推荐
设α1,…,αn为n个m维向量,且m<n,证明:α1,…,αn线性相关.
向量组α1,αs线性无关的充要条件是().
利用变换x=arctant将方程cos4x+cos2x(2一sin2x)+y=tanx化为y关于t的方程,并求原方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)是连续函数.若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax一1).
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:两个球中一个是红球一个是白球;
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f"(x)=f(x)=0在(0,1)内有根.
求由方程x2+y3一xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
已知A,B为三阶非零方阵,为齐次线性方程组BX=0的3个解向量,且AX=β3有非零解.(1)求a,b的值;(2)求BX=0的通解.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
随机试题
下列不属于公务员回避类型的是()
全科医生的“守门人”作用不包括
案情:2008年3月10日凌晨二点钟左右,张某、李某和王某三人蒙面闯进郝某家。三个人进了郝某睡觉的房间,张某从身上抽出砍刀,用刀背猛敲郝某的脑袋。一阵剧痛使郝某惊醒过来:“你们是谁?要干什么?”随后,三人将郝某按在床上,并一齐举起手中的利刃,朝他身上一顿乱
原始取得与继受取得
工业用地不得以()方式出让。
按照《建设工程勘察设计管理条例》对建设工程勘察设计文件编制的规定,在编制建设工程勘察设计初步设计文件时,应当满足:
A公司2012年5月末,银行存款日记账余额472000元,银行对账单余额664500元,经过核对发现以下未达账项:(1)A公司委托银行代收款项,甲企业偿还所欠A公司货款15000元,银行已登记入账,企业因未收到银行的收款通知尚未记账;(2)银行代A公司
需进行标识查验的纺织品是指外经贸部公布的《需经检验检疫机构查验的出口纺织品目录》内的产品。( )
传统的特质理论认为,领导者()。
下面语句会产生编译错误的是
最新回复
(
0
)