首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于λ1的一个特征向量。记B=A5一4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于λ1的一个特征向量。记B=A5一4A3+E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B
admin
2019-07-16
64
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一1,1)
T
是A的属于λ
1
的一个特征向量。记B=A
5
一4A
3
+E,其中E为三阶单位矩阵。
(Ⅰ)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B。
选项
答案
(Ⅰ)由Aα
1
=α
1
得A
2
α
1
=Aα
1
一α
1
,进一步 A
3
α
1
=α
1
, A
5
α
1
=α
1
, 故 Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
—4A
3
α
1
+α
1
=α
1
一4α
1
+α
1
=一2α
1
。 从而α
1
是矩阵B的属于特征值一2的特征向量。 因B=A
5
一4A
3
+E,且A的三个特征值λ
1
=1,λ
2
=2,λ
3
=一2,则B的三个特征值为μ
1
=一2,μ
2
=1,μ
3
=1。 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又A为对称矩阵,得B也是对称矩阵,因此α
1
与α
2
,α
3
正交,即 α
1
T
α
2
=0, α
1
T
α
3
==0。 所以α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解: [*] 即b的全部特征值的特征向量为: [*] 其中k
1
≠0是不为零的任意常数,k
2
,k
3
是不同时为零的任意常数。 (Ⅱ)令P=(α
1
,α
2
,α
3
)=[*],得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1AJ4777K
0
考研数学三
相关试题推荐
证明:r(AB)≤min{r(A),r(B)}.
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中r(B)=2.求方程组(Ⅱ)BX=0的基础解系;
设f(x)满足等式xf’(x)-f(x)=且f(1)=4,则∫01f(x)dx=______.
设D={(x,y)|0<x<1,0<y<1),变量(X,Y)在区域D上服从均匀分布,令判断X,Z是否独立.
设f(x)在(一∞,+∞)连续,在点x=0处可导.且f(0)=0.令试求A的值,使F(x)在(一∞,+∞)上连续;
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2x-y)+g(x,xy),求.
设z=f(x+y,y+z,z+x),其中f连续可偏导,则=__________.
设f(x)在(a,b)内可导,且x0∈(a,b)使得又f(x0)>0(<0),(如图2.12),求证:f(x)在(a,b)恰有两个零点.
设f(x)=x2(x—1)(x—2),则f’(x)的零点个数为()
证明不等式:xarctanx≥(1+x2).
随机试题
关于丁螺环酮,下列说法错误的是
男性,50岁,因车祸肝破裂,面色苍白,脉搏快弱,四肢冰冷,血压11.2/6.7kPa(84/50mmHg),呈现休克有效的治疗是
患者,女,36岁。慢性右下腹痛2年,伴不规则发热,腹泻1年,2年前有过肛周脓肿。体格检查无异常。X线造影示回肠末端及升结肠节段性病变、肠腔狭窄。其最可能的诊断为
甲对乙享有60万元债权,丙、丁分别与甲签订保证合同,但未约定保证责任的范围和方式。戊以价值30万元的房屋为乙向甲设定抵押并办理了登记。请回答以下问题。若乙的朋友己与乙达成协议,由其代替乙向甲还款,下列说法何者正确?
下列关于增值税纳税义务发生时间的表述中,正确的有()。
确定法国国民教育义务、免费、世俗三原则的法案是()
下面的叙述中,正确的是______。
设有如下程序段:Dima(10)ForEachxInaPrintx;Nextx在上面的程序段中,变量x必须是
Thecommandersaidtohistroopsthatundernocircumstances______tostepacrosstheborder.
A、Physics.B、Mathematics.C、Environmentalscience.D、Lifescience.A
最新回复
(
0
)