首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可导,且x0∈(a,b)使得又f(x0)>0(<0),(如图2.12),求证:f(x)在(a,b)恰有两个零点.
设f(x)在(a,b)内可导,且x0∈(a,b)使得又f(x0)>0(<0),(如图2.12),求证:f(x)在(a,b)恰有两个零点.
admin
2019-02-20
81
问题
设f(x)在(a,b)内可导,且
x
0
∈(a,b)使得
又f(x
0
)>0(<0),
(如图2.12),求证:f(x)在(a,b)恰有两个零点.
选项
答案
由[*]x
1
∈(a,x
0
)使f(x
1
)<0,[*]x
2
∈(x
0
,b)使f(x
2
)<0,又f(x
0
)>0,则f(x)在(x
1
,x
0
)与(x
0
,x
2
)内各至少存在一个零点. 因f’(x)>0([*] x∈(a,x
0
)),从而f(x)在(a,x
0
)单调增加;f’(x)<0([*]x∈(x
0
,b)),从而f(x)在(x
0
,b)单调减少.因此,f(x)在(a,x
0
),(x
0
,b)内分别存在唯一零点,即在(a,b)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/XFP4777K
0
考研数学三
相关试题推荐
设A、B均为n阶实对称矩阵,且A的特征值全大于a,B的特征值全大于b,其中a,b均为实常数,证明:矩阵A+B的特征值全大于a+b.
设A是n阶方阵,且E+A可逆,令f(A)=(E—A)(E+A)—1,证明:若A是反对称矩阵,则f(A)是正交阵.
设f(x)在区间[0,+∞)内二阶可导,且在x=1处与曲线y=x3一3相切,f(x)在(0,+∞)内与曲线y=x3一3有相同的凹向,求方程f(x)=0在(1,+∞)内实根的个数.
设A为n阶矩阵.(1)已知β为n维非零列向量,若存在正整数k,使得Ak≠0,但Ak+1β=0,则向量组β,Aβ,A2β,…,Akβ线性无关;(2)证明:齐次线性方程组Anx=0与An+1x=0是同解线性方程组;(3)证明:r(
设A、B为两个n阶矩阵,且A的n个特征值两两互异,若A的特征向量恒为B的特征向量,则AB=BA.
设f(x)为连续函数,满足=f(x),则f(x)=__________.
设函数f(x)的一个原函数为,则∫x2f(1一x3)dx=__________.
由曲线y=1—(x—1)2及直线y=0围成的图形(如图1—3—1所示)绕y轴旋转一周而成的立体体积V是()
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
随机试题
在Excel2003工作表中,单元格D4中有公式“=A1+$B2+$3”,在第2列之前插入一列之后,单元格E4中的公式为“________________”。
HBsAg携带者是以下哪一型病毒肝炎的保毒宿主和主要传染源
A.Ⅰ期临床试验B.Ⅱ期临床试验C.Ⅲ期临床试验D.Ⅳ期临床试验E.临产前实验治疗作用的初步评价阶段是
对岩质边坡变形破坏影响最大的因素是:
某项目购买一台国产设备,其购置费为1325万元,运杂费率为12%,则该设备的原价为()万元。
根据《中华人民共和国证券法》的规定,下列关于擅自改变公开发行证券募集资金用途的后果,说法正确的有()。Ⅰ.擅自改变用途,但未作纠正的,可以公开发行新股Ⅱ.对直接负责人员给予警告,并处10万元以上100万元以下的罚款Ⅲ.责令改正,处
阅读下列材料,回答问题。洋快餐以其时尚、美味、快捷的特点吸引了众多消费者,尤其受到儿童和青少年的青睐。从营养学的角度分析,洋快餐具有“三高”和“三低”的特点,即高脂肪、高热量、高蛋白质,低维生素、低矿物质、低纤维。洋快餐的制作方式以烤、炸为主,脂
1955年的(),是第三世界崛起的开端。
当出租车租金下调后,对公共汽车服务的()。
目前,广泛使用的电子邮件安全方案是PGP和()。
最新回复
(
0
)