首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)连续且关于χ=T对称,a<T<b.证明:∫abf(χ)dχ=2∫Tbf(χ)dχ+∫a2T-bf(χ)dχ.
设f(χ)连续且关于χ=T对称,a<T<b.证明:∫abf(χ)dχ=2∫Tbf(χ)dχ+∫a2T-bf(χ)dχ.
admin
2021-11-09
37
问题
设f(χ)连续且关于χ=T对称,a<T<b.证明:∫
a
b
f(χ)dχ=2∫
T
b
f(χ)dχ+∫
a
2T-b
f(χ)dχ.
选项
答案
由f(χ)关于χ=T对称得.f(T+χ)=f(T-χ), 于是∫
T
2T-b
f(χ)dχ[*]∫
T
b
f(2T-u)(-du)=-∫
T
b
f[T-(u-T)]du =-∫
T
b
f[T+(u-T)]du=-∫
T
b
f(χ)dχ 得∫
T
b
f(χ)dχ+∫
T
2T-b
f(χ)dχ=0, 故∫
a
b
f(χ)dχ=∫
a
b
f(χ)dχ+∫
T
b
f(χ)dχ+∫
T
2T-b
f(χ)dχ =∫
a
T
f(χ)dχ+∫
T
b
f(χ)dχ+∫
T
b
f(χ)dχ+∫
T
2T-b
f(χ)dχ 2∫
T
b
f(χ)dχ+∫
a
2T-b
f(χ)dχ.
解析
转载请注明原文地址:https://kaotiyun.com/show/1Sy4777K
0
考研数学二
相关试题推荐
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T.B=(α1,α2,α3),求Bx=b的通解;
过点P(1,0)作曲线的切线,求:该平面图形绕直线y=-1旋转一周所成旋转体体积.
微分方程的通解为__________.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解。
设向量组a1,a2,...,an-1为n维线性无关的列向量组,且与非零向量Β1,Β2正交。证明:Β1,Β2线性相关。
设,且存在三阶非零矩阵B,使得AB=O,则a=______,b=_______.
把x→0﹢时的无穷小量α=∫0x2tantdt,β=∫0xcost2dt,γ=sint3dt按从高阶到低阶排列,则正确的排列次序是()
计算二重积分,其中积分区域D是由抛物线y=x2和圆x2+y2=2及x轴在第一象限所围成的平面区域。
计算二重积分
设A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn)。记向量组(I)α1,α2,…,αn,向量组(Ⅱ)β1,β2,…,βn,向量组(Ⅲ)γ1,γ2,…,γn。已知向量组(Ⅲ)线性相关,则有()
随机试题
颈椎病受压并可引起临床症状的组织有
物质与意识的关系是()。
女性,74岁。因外阴瘙痒,轻度口干,伴胸闷、心前区不适3个月余就诊。平素怕冷、便秘。体检:肥胖、面部及眼睑水肿,头发、眉毛干枯、稀疏。心率60次/min,律齐,心音低钝,心界于左锁骨中线外0.5cm,肝于肋下3指,肝颈回流征(+),双下肢胫前黏液性水肿。空
下列穴位中,具有祛风、利胆、舒筋、宽肋的是
影响药物吸收的主要因素有()。
对于法律规定的不要式行为,当事人可以在法律允许的范围内选择( )。
我国衡量银行收益合理性的监测指标包括()。
近年来,随着飞秒脉冲激光技术的发展,飞秒时间__________光谱技术在化学__________动力学、光合作用等超快过程研究领域得到了广泛应用。填入画横线部分最恰当的一项是:
CarrieAhernisn’toneofthosecontemporarychoreographerswhomakesadanceandmoveson.Shereallydigsherheelsintoapie
TestingTimesResearchersareworkingonwaystoreducetheneedforanimalexperiments,butnewlawsmayincreasethenumbe
最新回复
(
0
)