首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
齐次线性方程组的系数矩阵为A,存在B≠O,使得AB=O,则( )
齐次线性方程组的系数矩阵为A,存在B≠O,使得AB=O,则( )
admin
2019-03-23
47
问题
齐次线性方程组
的系数矩阵为A,存在B≠O,使得AB=O,则( )
选项
A、λ= —2且|B|=0。
B、λ= —2且|B|≠0。
C、λ=1且|B|=0。
D、λ=1且|B|≠0。
答案
C
解析
存在B≠O,使AB=O,说明齐次线性方程组Ax=0有非零解,故
|A|=
=(1—λ)
2
=0,
解得λ=1,而当λ=1时,R(A)=1,由矩阵的秩的性质知,R(A)+R(B)≤3,则R(B)≤2,故|B|=0,故选C。
转载请注明原文地址:https://kaotiyun.com/show/1XV4777K
0
考研数学二
相关试题推荐
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
设α,β都是n维非零列向量,A=αβT.证明:A相似于对角矩阵βTα≠0.
设α,β都是n维列向量时,证明①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
下列矩阵中不能相似对角化的是
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
设A是m阶正定矩阵,B是m×n实矩阵,证明:BTAB正定r(B)=n.
设y=∫0χdt+1,求它的反函数χ=φ(y)的二阶导数及φ〞(1).
已知曲线L的方程406过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;
随机试题
企业家政府理论的基本思想是主张把企业经营的一些成功的管理方法移植到政府中来,使政府这类公共组织合理利用资源,提高行政效率,以重新塑造政府的形象。
关于胸腔积液病因的描述,哪项是正确的
规定检查崩解时限的制剂应为
加速折旧属于税法规定的企业所得税税收优惠方式之一,其中采取缩短折旧年限方法的,最低折旧年限不得低于规定折旧年限的()。
教师职业道德的核心是()。
对于被判处、的犯罪分子,根据其犯罪和表现,认为适用缓刑确实不致的,可以宣告缓刑。
如果飞行员严格遵守操作规程,并且飞机在起飞前经过严格的例行技术检验,那么飞机就不会失事,除非出现如劫机这样的特殊意外。这架波音747在金沙岛上空失事。如果上述断定是真的,那么以下哪项也一定是真的?
毛泽东曾指出:“如果我们能够普遍地彻底地解决土地问题,我们就获得了足以战胜一切敌人的最基本的条件。”我国历史上规模最大,也是历次土改运动中进行得最好的一次是()
EveryspringmigratingsalmonreturntoBritishColumbia’sriverstospawn.Andeveryspringnewreportsdetailfreshdisasters
ClimateChangeClimatechangeiswithus.Adecadeago,itwasconjecture.Nowthefutureisunfoldingbeforeoureyes.Cana
最新回复
(
0
)