首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵Λ,使得QTAQ=A. (3)求A及[A-(3/2)E]6.
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵Λ,使得QTAQ=A. (3)求A及[A-(3/2)E]6.
admin
2018-06-27
51
问题
设3阶实对称矩阵A的各行元素之和都为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
都是齐次线性方程组AX=0的解.
(1)求A的特征值和特征向量.
(2)求作正交矩阵Q和对角矩阵Λ,使得Q
T
AQ=A.
(3)求A及[A-(3/2)E]
6
.
选项
答案
(1)条件说明A(1,1,1)
T
=(3,3,3)
T
,即α
0
=(1,1,1)
T
是A的特征向量,特征值为3.又α
1
,α
2
都是AX=0的解说明它们也都是A的特征向量,特征值为0.由于α
1
,α
2
线性无关,特征值0的重数大于1.于是A的特征值为3,0,0. 属于3的特征向量:cα
0
,c≠0. 属于0的特征向量:c
1
α
1
+c
2
α
2
,c
1
,c
2
不都为0. (2)将α
0
单位化,得η
0
=[*] 对α
1
,α
2
作施密特正交化,得 [*] 作Q=(η
0
,η
1
,η
2
),则Q是正交矩阵,并且 Q
T
AQ=Q
-1
AQ=[*] (3)建立矩阵方程A(α
0
,α
1
,α
2
)=(3α
0
,0,0),用初等变换法求解:得 [*] 由Q
-1
AQ=[*] 得 A=Q[*]Q
-1
. 于是 A-(3/2)E=[*]Q
-1
. [A-(3/2)E]
6
=(3/2)
6
E.
解析
转载请注明原文地址:https://kaotiyun.com/show/1Zk4777K
0
考研数学二
相关试题推荐
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3证明:α,Aα,A2α线性无关;
设D={(x,y)|x2+y2≤1},证明不等式
设则f(x)=_________.
已知是f(x)当x≥1时的一个原函数,则
证明n阶矩阵相似.
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是()
此题用分块积分法,如图所示[*]
(2014年)设函数f(χ)=,χ∈[0,1].定义函数列:f1(χ)=f(χ),f2(χ)=f(f1(χ)),…,fn(χ)=f(fn-1(χ)),…记Sn是由曲线y=fn(χ),直线χ=1及χ轴所围成平面图形的面积,求极限nSn.
设星形线方程为(a>0).试求:1)它所围的面积;2)它的周长;3)它围成的区域绕x轴旋转而成的旋转体的体积和表面积.
随机试题
阅读《麦琪的礼物》中的一段文字,然后回答下列问题。我的拙笔在这里告诉了诸位一个没有曲折、不足为奇的故事:那两个住在一间公寓里的笨孩子,极不聪明地为了对方牺牲了他们一家最宝贵的东西。但是,让我们对目前一般聪明人说最后一句话,在所有馈赠礼物的人当中,那两个人
六腑的共同生理特点是
A.寒凉药B.开窍药C.发汗药D.苦寒清热药E.淡渗利湿药阴虚津亏者忌用()。
在混凝土工程中,掺入粉煤灰,硅粉可减少水泥用量,降低水化热,()混凝土裂缝的产生。
下列房地产统计指标中,属于时点指标的有()。
开户银行对本行签发的超过大额现金标准、注明“现金”字样的银行汇票、银行本票,视同大额现金支付,实行登记备案制度。()
甲食品有限公司(以下简称“甲公司”,增值税一般纳税人)。2016年2月发生下列经营业务:(1)从某农业生产者处收购花生,开具的收购凭证上注明收购价格为50000元,货物验收入库;支付某运输企业(一般纳税人)运费并取得增值税专用发票,注明运费254.56元
100个骨牌整齐地排成一列,依次编号为1、2、3、4…99、100。如果第一次拿走所有偶数位置上的牌,第二次再从剩余牌中拿走所有偶数位置上的牌,第三次再从剩余牌中拿走所有奇数位置上的牌,第四次再从剩余牌中拿走所有奇数位置上的牌,第五次再从剩余牌中拿走所有偶
求
Itisnecessaryforthevaluablespeciesto______itselfinordertostayinexistence.
最新回复
(
0
)