首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组(Ⅰ)及方程组(Ⅱ)的通解为k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T.求方程组(Ⅰ),(Ⅱ)的公共解.
已知方程组(Ⅰ)及方程组(Ⅱ)的通解为k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T.求方程组(Ⅰ),(Ⅱ)的公共解.
admin
2016-07-22
25
问题
已知方程组(Ⅰ)
及方程组(Ⅱ)的通解为k
1
[-1,1,1,0]
T
+k
2
[2,-1,0,1]
T
+[-2,-3,0,0]
T
.求方程组(Ⅰ),(Ⅱ)的公共解.
选项
答案
将方程组(Ⅱ)的通解 k
1
[-1,1,1,0]
T
+k
2
[2,-1,0,1]
T
+[-2,-3,0,0]
T
=[-2-k
1
+2k
2
,-3+k
1
-k
2
,k
1
,k
2
]
T
代入方程组(Ⅰ),得 [*] 化简得 k
1
=2k
2
+6. 将上述关系式代入(Ⅱ)的通解,得方程组(Ⅰ),(Ⅱ)的公共解为: [-2-(2k
2
+6)+2k
2
,-3+2k
2
+6-k
2
,2k
2
+6,k
2
]
T
=[-8,k
2
+3,2k
2
+6,k
2
]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/1cw4777K
0
考研数学一
相关试题推荐
设A是n阶矩阵,A经过初等行变换得到B,则正确的是()
设f(x)在[0,﹢∞)上连续,且f(x)=dt在(Ⅱ)的基础上,任取x0>ξ>0,xn=2f(xn-1)(n≥1),证明:一ξ
设矩阵A=与对角矩阵A相似求方程组(-2E-A*)x=0的通解
设f(x)二阶可导,且∫0xf(t)dt+∫0xtf(x-t)dt=x,求f(x).
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
设f(x)=x2-2㏑x,求使得fˊ(x)=0的x.
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).写
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
随机试题
下列人物中全属于儒家的是()
中央处理器和主存储器构成计算机的主体,称为主机。()
下列有关类风湿关节炎的叙述,不正确的是
上尿路结石最常见的类型是
不属于小儿神经系统解剖生理特点的是
对痢疾病人做生物学检查,下列哪项是错误的
根据《合同法》,下列合同为无效合同的是()。
老年人在连结人类代际、维系文明社会中扮演着重要角色,并为社会的长期稳定、繁荣发展奠定坚实基础。由于科技发展与进步,老年人越来越被视为与技术发达的现代社会脱节。但是,大量证据表明,如果将老龄化视为经济发展的机遇.全球范围内不断增长的老年人数量完全可能成为现代
某公司2010年年初存货为150万元,年初全部资产总额为1400万元,年初资产负债率40%。2010年年末有关财务指标为:流动比率210%,速动比率110%,资产负债率35%,长期负债420万元,全部资产总额1600万元,流动资产由速动资产和存货组成。
Unconsciously,weallcarrywithus【51】havebeencalled"bodybubbles".Thesebubblesarelikeinvisiblewails【52】defineourper
最新回复
(
0
)