首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组(Ⅰ)及方程组(Ⅱ)的通解为k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T.求方程组(Ⅰ),(Ⅱ)的公共解.
已知方程组(Ⅰ)及方程组(Ⅱ)的通解为k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T.求方程组(Ⅰ),(Ⅱ)的公共解.
admin
2016-07-22
55
问题
已知方程组(Ⅰ)
及方程组(Ⅱ)的通解为k
1
[-1,1,1,0]
T
+k
2
[2,-1,0,1]
T
+[-2,-3,0,0]
T
.求方程组(Ⅰ),(Ⅱ)的公共解.
选项
答案
将方程组(Ⅱ)的通解 k
1
[-1,1,1,0]
T
+k
2
[2,-1,0,1]
T
+[-2,-3,0,0]
T
=[-2-k
1
+2k
2
,-3+k
1
-k
2
,k
1
,k
2
]
T
代入方程组(Ⅰ),得 [*] 化简得 k
1
=2k
2
+6. 将上述关系式代入(Ⅱ)的通解,得方程组(Ⅰ),(Ⅱ)的公共解为: [-2-(2k
2
+6)+2k
2
,-3+2k
2
+6-k
2
,2k
2
+6,k
2
]
T
=[-8,k
2
+3,2k
2
+6,k
2
]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/1cw4777K
0
考研数学一
相关试题推荐
设y=y(x)是y’’+2y+y=e3x满足y(0)=y’(0)=0的解,则当x=0时,与y(x)为等价无穷小的是()
设f‘(x)=1+∫0x[6cos2t-f(t)]dt,且f(0)=1,计算I=∫0x[f(x)/x+1)+f’(x)ln(1+x)]dx
设都是线性方程组AX=0的解向量,只要系数矩阵A为().
证明:曲线上任一点的切线的横截距与纵截距之和为2.
设f(x)在[0,1]上连续,且f(x)<1,证明:2x-∫0xf(t)dt=1在(0,1)内有且仅有一个实根.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
已知α1=(﹣1,1,a,4)T,α2=(﹣2,1,5,a)T,α3=(a,2,10,1)T是四阶方阵A的属于三个不同特征值的特征向量,则口的取值为().
假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布,(I)求相继两次故障之间时间间隔T的概率分布;(Ⅱ)求在设备已经无故障工作8小时的情形下,再无故障工作8小时的概率Q.
已知4阶方阵A=(α1,α2,α2,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α=2α2-aα3,如果β=α1+α2+α3+α
已知f〞(x)<0,f(0)=0,试证:对任意的两正数x1和x2,恒有f(x1+x2)<f(x1)+f(x2)成立.
随机试题
所谓__________是指信息在传递和交换过程中,由于信息意图受到干扰或误解,而导致沟通失真的现象。
正常情况下,最易引起牙本质敏感症的釉牙骨质界结构是
急性肝衰竭最多见的病因是
甲公司依法分立为乙公司和丙公司,内部合同约定由乙公司承受甲公司的所有的债权,由丙公司承担甲公司的所有的债务。则下列说法正确的是()。
公安机关消防机构于每年的第()季度对本辖区消防安全重点单位进行核查调整,以公安机关文件形式上报本级人民政府。
消防给水架空管道外刷红色油漆或涂红色环圈标志,并注明管道名称和水流方向标识。红色环圈标志宽度不应小于()mm,间隔不宜大于4m,在一个独立的单元内环圈不宜少于两处。
关于借贷记账法下的账户结构,下列说法中正确的有()。(3.2)
某公司于2008年2月15日提出商标注册申请,商标局于2008年5月5日作出初审公告。根据《商标法》的规定,甲依法可以取得商标专用权的时间是2008年5月5日。()
水是人体内含量最多的组成成分,人体若丢失水分()以上,生命活动将无法维持。
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须保存在考生文件夹下。在考生文件夹下打开文档WORD.DOCX,按照要求完成下列操作并以该文件名(WORD.DOCX)保存文档。某高
最新回复
(
0
)