首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶实对称矩阵A满足trA=一6,AB=C,其中求k的值与矩阵A.
已知3阶实对称矩阵A满足trA=一6,AB=C,其中求k的值与矩阵A.
admin
2016-01-11
127
问题
已知3阶实对称矩阵A满足trA=一6,AB=C,其中
求k的值与矩阵A.
选项
答案
由题设AB=C可知A(1,2,1)
T
=0,从而λ
1
=0为A的特征值,α
1
=(1,2,1)
T
为相应的特征向量; 又A(1,k,1)
T
=(一12,一12k,一12)
T
=一12(1,k,1)
T
,由此可知λ
2
=一12为矩阵A的特征值,α
2
=(1,k,1)
T
为相应的特征向量,因为λ
1
+λ
2
+λ
3
=trA=一6,所以λ
3
=6. 又因为实对称矩阵属于不同特征值的特征向量正交,故有α
1
T
α
2
=0,即(1,2,1)(1,k,1)
T
=0,解得k=一1. 设A的属于λ
3
=6的特征向量为α
3
=(x
1
,x
2
,x
3
)
T
,则显然α
1
T
α
3
=0,α
2
T
α
3
=0,即得到方程组: [*]求得基础解系α
3
=(一1,0,1)
T
,即为A的属于λ
3
=6的特征向量. 由Aα
1
=0α
1
,Aα
2
=一12α
2
,Aα
3
=6α
3
,得A(α
1
,α
2
,α
3
)=(0,一12α
2
,6α
3
),即[*] 故[*]
解析
本题考查相似对角化的逆问题.用特征值与特征向量的定义Ax=λx,求特征值与特征向量.即若Ax=0有非零解x
0
.知0是A的特征值,x
0
是A的关于0特征值对应的特征向量,若Ax=λx,则λ是A的特征值,非零列向量x是A的关于特征值A的特征向量.还可用λ
1
+λ
2
+λ
3
=trA求特征值.
转载请注明原文地址:https://kaotiyun.com/show/1e34777K
0
考研数学二
相关试题推荐
设X1,X2,…,Xn为总体X~B(N,p)(0<P<1)的简单随机样本,则P的最大似然估计量=________.
设P{X=0)=1/4,P{X=1}=3/4,P{Y=-1/2}=1,3维向量组α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为()
设X1,X2,…,Xn为来自总体X~N(μ,σ2)的简单随机样本,且利用Y1,Y2,…,Yn,求σ的矩估计量
设f(x)在[0,1]上有二阶连续导数,且f(1)=f’(1)=0.证明:存在不同的ξ,η∈(0,1),使得ξ2f”(ξ)=2f’(η)(ξ-1).
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.求正交变换x=Qy,将二次型f(x1,x2,x3)=xTAx化为标准形;
设随机变量X与Y相互独立,X~N(0,σ2)(σ>0).且Y的分布律为P{Y=-1}=P{Y=1}=1/2,记Z=XY.设Z1,Z2,…,Zn为来自总体Z的简单随机样本,求σ2的最大似然估计量
设h(x,y,z)表示由原点到椭球面∑:上过点P(x,y,z)处的切平面的垂直距离.计算I=h(x,y,z)dS.
设区域D={(x,y)|-1≤x≤1,-1≤y≤1),f(x)为D内的正值连续函数,a,b为常数,则=________.
设曲线L为球面x2+y2+z2=1与平面z+y+z=0的交线,则∮L(xy+yz+zx)ds=().
随机试题
漫步于森林公园之中,当游客看到以绿色为主的自然色调,呼吸到富含负氧离子的清新空气,嗅到沁人心脾的香,听到林间百鸟鸣唱,就会不自觉地陶醉其中。这种审美感受是()。
患者,男,50岁,左肩疼痛1个月,肩部活动困难,夜间疼痛明显,无发热、盗汗。除下列哪项外,均应考虑
项目施工准备阶段收集的信息不包括( )。
企业对有确凿证据表明确实无法收回的应收款项,经批准后作为()。
基金的市场部负责总证券投资基金托管业务的市场开拓、市场研究、客户管理关系维护等。()
古诗“去年元夜时,花市灯如昼。月上柳梢头,人约黄昏后”中“元夜”所指的传统节日是()。
各项公安专业工作结合自身工作特点开展(),使群众工作成为公安专业工作的有机组成部分。
Whatisobesity?Ifwesaythat"fatiscriticalforgoodhealth,"wemeanthat
Mostearthquakesoccurwithintheupper15milesoftheearth’ssurface.Butearthquakescananddooccuratalldepthstoabout
A、Askforacheaperpriceonthetelevision.B、Besatisfiedwithwhathehas.C、Tryadifferentstore.D、Researchwhattelevisio
最新回复
(
0
)