首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(96年)设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的数λ1,…,λm和k1,…,km,使(λ1+k1)α1+…+(λm+kk)αm+(λ1-k1)β1+…+(λm-km)βm=0,则 【 】
(96年)设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的数λ1,…,λm和k1,…,km,使(λ1+k1)α1+…+(λm+kk)αm+(λ1-k1)β1+…+(λm-km)βm=0,则 【 】
admin
2019-03-11
43
问题
(96年)设有任意两个n维向量组α
1
,…,α
m
和β
1
,…,β
m
,若存在两组不全为零的数λ
1
,…,λ
m
和k
1
,…,k
m
,使(λ
1
+k
1
)α
1
+…+(λ
m
+k
k
)α
m
+(λ
1
-k
1
)β
1
+…+(λ
m
-k
m
)β
m
=0,则 【 】
选项
A、α
1
,…,α
m
和β
1
,…,β
m
都线性相关.
B、α
1
,…,α
m
和β
1
,…,β
m
都线性无关.
C、α
1
+β
1
,…,α
m
+β
m
,α
1
-β
1
,….α
m
-β
m
线性无关.
D、α
1
+β
1
,…,α
m
+β
m
,α
1
-β
1
,…,α
m
-β
m
线性相关.
答案
D
解析
由题设等式,得
λ
1
(α
1
+β
1
)+…+λ
m
(α
m
+β
m
)+k
1
(α
1
-β
1
)+…k
m
(α
m
-β
m
)=0且λ
1
,…,λ
m
,k
1
,…,k
m
不全为零,故向量组α
1
+β
1
,…,α
m
+β
m
,α
1
+β
1
,…,α
m
-β
m
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/1kP4777K
0
考研数学三
相关试题推荐
设f(x)在x>0上有定义,对任意的正实数x,y,f(xy)=xf(y)+yf(x).f’(1)=2,试求f(x).
设函数f(x)连续可导,且f(0)=0,F(x)=∫0xtn-1f(xn-tn)dt,求.
设α1,α2,…,αm均为n维实列向量,令矩阵证明:A为正定矩阵的充分必要条件是向量组α1,α2,…,αm线性无关.
将函数(0≤x≤π)展开成正弦级数.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB的对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a2k,…,annk;f(A)的对角线元素为f(
设α1,α2,…,αs和β1β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1β2,…,βt线性无关.
已知随机变量X的概率密度为f(x)=Aex(B-x)(一∞<x<+∞),且E(X)=2D(X),试求:(Ⅰ)常数A,B之值;(Ⅱ)E(X2+eX);(Ⅲ)Y=|(X—1)|的分布函数F(y).
汽车加油站共有两个加油窗口,现有三辆车A,B,C同时进入该加油站,假设A、B首先开始加油,当其中一辆车加油结束后立即开始第三辆车C加油,假设各辆车加油所需时间是相互独立且都服从参数为A的指数分布.求第三辆车C在加油站度过时间S的概率密度.
已知总体X服从参数为λ的泊松分布,X1,…,Xn是取自总体X的简单随机样本,其均值为+(2—3a)S2的期望为λ,则a=_______.
随机试题
保证保险分______________、_________________。
汉字的主要造字方法是()
下列哪种支气管肺癌的恶性度最高
A.化学药品名称B.中药材名称C.中药制剂名称D.药品通用名称E.药品商品名称
当事人不服人民法院作出的与诉讼有关的决定,可以向作出决定的人民法院申请复议,复议期间:()
《全国统一施工机械台班费用定额》中的耐用总台班是以(),并依其规定及条件确定的。
会计核算软件在某月进行月末结账以后,系统应能自动控制()。
甲和乙是夫妻,两人共有黄金4吨。丙是甲的父亲,丁是乙的弟弟,除此之外,两人无其他继承人。甲在某次空难事故中丧生,乙其后也因悲痛过度而去世。甲乙二人遗留的黄金应当()
当窗体大小改变时,要使其中的控件也按比例发生变化,应使用窗体的()。
Besidestheformofreports,inwhatotherformscanwegiveoralpresentations?
最新回复
(
0
)