首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,…,xn)=xTAx,且|A|<0. (Ⅰ)证明存在n维列向量ξ0,使得ξ0TAξ0<0; (Ⅱ)设A=,是否存在ξ0,使得ξ0TAξ0<0.若存在ξ0,则求ξ0,若不存在,说明理由.
设二次型f(x1,x2,…,xn)=xTAx,且|A|<0. (Ⅰ)证明存在n维列向量ξ0,使得ξ0TAξ0<0; (Ⅱ)设A=,是否存在ξ0,使得ξ0TAξ0<0.若存在ξ0,则求ξ0,若不存在,说明理由.
admin
2019-01-24
98
问题
设二次型f(x
1
,x
2
,…,x
n
)=x
T
Ax,且|A|<0.
(Ⅰ)证明存在n维列向量ξ
0
,使得ξ
0
T
Aξ
0
<0;
(Ⅱ)设A=
,是否存在ξ
0
,使得ξ
0
T
Aξ
0
<0.若存在ξ
0
,则求ξ
0
,若不存在,说明理由.
选项
答案
(Ⅰ)设A有特征值λ
i
,i=0,1,2,…,n-1,则|A|=[*]<0. 由上可知A有奇数个特征值小于零.设λ
0
<0,其对应的特征向量为ξ
0
,则有Aξ
0
=λ
0
ξ
0
,其中ξ
0
≠0. 两端右乘ξ
0
T
,得ξ
0
T
Aξ
0
=λ
0
ξ
0
T
ξ
0
.因ξ
0
≠O,故有ξ
0
T
ξ
0
>0. 又λ
0
<0,故ξ
0
T
Aξ
0
=λ
0
ξ
0
T
ξ
0
<0,得证存在n维列向量ξ
0
,使得ξ
0
T
Aξ
0
<0. (Ⅱ)由(Ⅰ)可知先求A的特征值.A的特征多项式为 [*] 由上可得A的负特征值λ
0
=-4.故知存在ξ
0
,使ξ
0
T
Aξ
0
<0.其中ξ
0
是λ
0
=-4对应的特征向量. 由[*] 解得λ
0
=-4对应的特征向量为[*] 此时[*] 【注】对应于A的二次型为f(x
1
,x
2
,x
3
)=3x
2
3
+2x
1
x
2
+8x
1
x
3
+2x
2
x
3
,取x
2
=0时,有3x
2
2
+2x
1
x
2
+2x
2
x
3
=0,只需取x
2
,x
3
异号,即取ξ
0
=(-1,0,1)
T
时,有f<0.
解析
转载请注明原文地址:https://kaotiyun.com/show/1vM4777K
0
考研数学一
相关试题推荐
计算位于平面z=1及z=2之间部分的外侧.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ,η∈(a,b),使得f’(ξ)=f’(η).
设总体X~U(θ1,θ2),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计和最大似然估计.
设(X,Y)的联合密度函数为f(X,y)=.求fX|Y(x|y).
计算(x2+y2)ds,其中S:x2+y2+z2=2z.
设A为三阶实对称矩阵,且为A的不同特征值对应的特征向量,则a=________.
设随机变量X服从参数为λ的指数分布,则P{X>}=_________.
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an为常数,且对一切x有|f(x)|≤|ex一1|.证明:|a1+2a2+…+nan|≤1.
设f(x)二阶连续可导,且曲线积分∫[3f’(x)一2f(x)+xe2x]ydx+f’(x)dy与路径无关,求f(x).
(2003年)设{an},{bn},{cn}均为非负数列,且则必有()
随机试题
试比较躯干四肢浅、深感觉传导路的主要异同。
A.放射治疗B.肿瘤切除术C.局部病灶内注入甲泼尼龙D.切刮、植骨、灭活骨软骨瘤最佳治疗
长期接触三硝基甲苯,可能造成的组织或器官损害是
雌激素的生理作用,不正确的是
在下列情形中,不构成缔约过失责任的是指()。
预应力筋的下料长度要通过计算确定,计算时应考虑的因素有()。
交通肇事罪:是指从事交通运输的人员因违反规章制度而发生的重大交通事故,致人重伤、死亡或者使公私财产遭受重大损失的行为。根据上面的定义,下面哪一种行为构成了典型的交通肇事罪?
()编制自陈量表的基本假设是只有施测者最了解受测者的人格特征。
设α(x)=,当x→0+时,这3个无穷小量按照从高阶到低阶的排序为().
集合竞价时,如果最后一笔成交是部分成交,则以前一日收盘价格为集合竞价产生的价格。()
最新回复
(
0
)