首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
admin
2022-04-02
100
问题
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=
且AB=O,求方程组AX=0的通解.
选项
答案
由AB=0得r(A)+r(B)≤3且r(A)≥1. (1)当k≠9时,因为r(B)=2,所以r(A)=1,方程组AX=0的基础解系含有两个线性无关的解向量,显然基础解系可取B的第1、3两列,故通解为X=k
1
[*](k
1
,k
2
为任意常数); (2)当k=9时,r(B)=1,1≤r(A)≤2, 当r(A)=2时,方程组AX=0的通解为C[*](C为任意常数); 当r(A)=1时,A的任意两行都成比例,不妨设a≠0, 由A[*](k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/21R4777K
0
考研数学三
相关试题推荐
设向量组(I)α1,α2,…,αn,其秩为r1,向量组(Ⅱ)β1,β2,…,βn,其秩为r2,且βi(i=l,2,…,s)均可以由α1,…α1线性表示,则().
设α,β为四维非零的正交向量,且A=αβT,则A的线性无关的特征向量个数为().
设有矩阵Am×n,Bn×m,已知En一AB可逆,证明:En—BA可逆,且(En—BA)-1=En+B(Em一AB)-1A.
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明:都是参数θ的无偏估计量,试比较其有效性.
构造齐次方程组,使得η1=(1,1,0,一1)T,η2=(0,2,1,1)T构成它的基础解系.
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为(Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T.(1)求(I)的一个基础解系;(2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY,化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设a0,a1,an-1是n个实数,方阵(1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;(2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使Pλ1AP=A.
随机试题
患者,女,30岁,急性支气管炎,咳嗽剧烈,咳脓性痰、量较多,咳嗽时感胸骨后疼痛。查体:T37.8℃,P98次/分。目前该患者最主要的护理问题是
1.背景某办公楼工程,地上8层,采用钢筋混凝土框架结构,设计图中有一层地下车库,外墙为剪力墙,中间部位均为框架结构。填充墙砌体采用混凝土小型空心砌块砌体。本工程基础底板为整体筏板,由于当地地下水平埋深比较浅,混凝土设计强度等级为C30P8,总方量约13
张经理打算在M市为公司购置一块建设用地,便委托当地老同学李某代办此事,双方从未谈及劳务报酬。李某经多方调查、咨询,挑选出一块令张经理满意的地皮,并做好了办理相关手续前的各种准备工作,但最终由于M市建设规划发生变化而未能实现。李某为此垫付了不少费用。对此,下
业务(1)会计分录:业务(2)会计分录:
下列关于股份支付的会计处理中,正确的有()
国家对工程招标代理机构实行()。
《普通高中美术课程标准(实验)》中设置的内容系列和模块是()。
为了进行差错控制,必须对传送的数据帧进行校验。在局域网中常采用的校验技术是(6)。CRC-CCITT的生成多项式是(7);假设一个CRC生成多项式为G(X)=4+X+1,要发送的信息码为101011,则算出的CRC校验码为(8)。假设采用的生成多项式为 G
(1)在考生文件夹中有工程文件sjt3.vbp,其中的窗体如图4所示。程序刚运行时,会生成一个有10个元素的整型数组。若选中“查找最大值”(或“查找最小值”)单选按钮,再单击“查找”按钮,则找出数组中的最大值(或最小值),并显示在标签Labe12中。请去
Thecitygovernmentrecognizesthatcitizenshavecertainnewneeds.Tobettermeetyourneeds,wehavemadeseveralchangesinco
最新回复
(
0
)