首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D=为正定矩阵,其中A,B分别为m阶、n阶对称矩阵,C为m×n矩阵. 利用(I)的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明你的结论.
设D=为正定矩阵,其中A,B分别为m阶、n阶对称矩阵,C为m×n矩阵. 利用(I)的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明你的结论.
admin
2021-01-19
54
问题
设D=
为正定矩阵,其中A,B分别为m阶、n阶对称矩阵,C为m×n矩阵.
利用(I)的结果判断矩阵B一C
T
A
-1
C是否为正定矩阵,并证明你的结论.
选项
答案
证一 因D为正定矩阵,而PTDP合同于D,由命题2.6.2.2(3)知,P
T
DP为正定矩阵,即 [*] 为正定矩阵.选X=[*]及任意Y=[y
1
,y
2
,…,y
n
]
T
≠0,则 [X
T
,Y
T
][*]=[X
T
A,Y
T
(B—C
T
A
-1
C)[*] =X
T
AX+Y
T
(B—C
T
A
-1
C)Y=Y
T
(B—C
T
A
-1
C)y>0. 故B—C
T
A
-1
C为正定矩阵. 证二 由证一知,M为正定矩阵,从而M的各阶顺序主子式大于零.于是B—C
T
A
-1
C的各阶顺序主子式也大于零.又因M为对称矩阵,故B—C
T
A
-1
C也为实对称矩阵,由命题2.6.2.1(2)知,B—C
T
A
-1
C为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/2384777K
0
考研数学二
相关试题推荐
设f(χ)在χ=a处二阶可导,证明:=f〞(a).
设矩阵A的伴随矩阵A*=,且ABA—1=BA—1+3E,其中E为四阶单位矩阵,求矩阵B。
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
求微分方程y’’(x+y2)=y’满足初始条件y(1)=y’(1)=1的特解。
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;(2)求(1)中的∫0x(t)dt;(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求∫0x
设n阶矩阵A的伴随矩阵为A*,证明:|A*|=|A|n—1。
设A=(α1,α2,α3,α4),其中A*为A的伴随矩阵,α1,α2,α3,α4为4维列向量,且α1,α2,α3线性无关,α4=α1+α2,则方程组A*x=0
随机试题
婴儿出现(),如出血位置无法压迫,可让婴儿躺下,用拳头或手掌根部把出血的血管压向对侧的骨头方向。
常见的肛周脓肿是
治疗阴虚内热型内伤发热的首选方剂是
可能的诊断是若需要应采取的正确预防措施是
喜欢买报纸的人、常常________于报刊亭的人必然有着阅读的兴趣并养成了习惯,这样的行为不仅影响着个人的生活,也在________中影响着他人。将报刊亭打造成一个公共的阅读空间,就像现在随处可见的自助K歌房一样,这种________又便捷的阅读点,激发的
典型欠阻尼二阶系统超调量大于5%,则其阻尼ξ的范围为()。
从各国保险立法来看,关于投保人或被保险人的告知方式一般分为以下两种,即()。
某企业2011年年底“应付账款”科目月末贷方余额20000元,其中:“应付甲公司账款”明细科目贷方余额15000元,“应付乙公司账款”明细科目贷方余额5000元;“预付账款”科目月末贷方余额10000元,其中:“预付账款——甲工厂”明细科目贷方余额
Manystudentsfindtheexperienceofattendinguniversitylecturestobeareallyconfusingand【C1】______experience.Thelecture
Ithasbeenproventhatshortburstsofconcentrationrepeatedfrequentlyaremuchmore【B1】______thanonelongperiod.So,even
最新回复
(
0
)