首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex(x>0).
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex(x>0).
admin
2022-10-09
33
问题
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<e
x
(x>0).
选项
答案
令φ(x)=e
-x
f(x),则φ(x)在[0,+∞)内可导,又φ(0)=1,φ’(x)=e-
-x
[f’(x)-f(x)]<0(x>0),所以当x>0时,φ(x)<φ(0)=1,所以有f(x)<e
x
(x>0).
解析
转载请注明原文地址:https://kaotiyun.com/show/27R4777K
0
考研数学三
相关试题推荐
设实二次型f(x1,x2,x3)=xTAx的秩为2,且α1=(1,0,0)T是(A-2E)x=0的解,α2=(0,-1,1)T是(A-6E)x=0的解.写出该二次型;
设实二次型f(x1,x2,x3)=xTAx的秩为2,且α1=(1,0,0)T是(A-2E)x=0的解,α2=(0,-1,1)T是(A-6E)x=0的解.用正交变换将该二次型化成标准形,并写出所用的正交变换和所化的标准形;
设3元实二次型f(x)=xTAx经正交变换x=Cy化成是Ax=0的解向量.写出该实二次型d(x)的表达式.
已知A是3阶的实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.求α和二次型xTAx表达式;
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并求出相应的正交矩阵.
(1)证明当|x|充分小时,不等式0≤tan2x-x2≤x4成立;(2)设求
设,其中g(x)有二阶连续导数,且g(0)=1,g’(0)=-1;(Ⅰ)求f’(x);(Ⅱ)讨论f’(x)在(-∞,+∞)上的连续性.
设f(x)为二阶连续可导,且,证明级数绝对收敛.
(I)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似.(Ⅱ)设求可逆矩阵P,使得P-1AP=B.
设f(x)∈C[a,b],在(a,b)内二阶可导.(Ⅰ)若f(a=0,f(b)0.证明:存在ξ∈(a,6),使得f(ξ)f’’(ξ)+f’2(ξ)=0;(Ⅱ)若f(a)=f(b)==0,证明:存在η∈(a,b),使得f’’(η)=f(η).
随机试题
成为第一次工人运动高潮的起点的罢工是()
做插销试验时,一般在底板上开4个直径为()的孔,以供其4次试验用。
恩格尔系数是表示一个国家()高低的指标之一。
不易嵌顿的腹外疝是()。
吊索运输、安装过程中不得受损坏。吊索安装应与加劲梁安装配合进行,并对号入座,安装时必须采取防止()措施。
Credit.Monitor模型对有风险贷款和债券进行估值的理论基础是()。
劳动、资本、技术、管理等生产要素是社会生产不可或缺的因素。在我国社会主义初级阶段,实行按生产要素分配的必要性和根据是()。
莲花山脉的山岩上长着许多野生的兰草和茶花,盛放的时候,飘满了清幽的香气;我在院子里种的白玉兰也_________,仿佛要和野花斗香,四季不停地飘。填入画横线部分最恰当的一项是()
Accordingtothefirstparagraph,thegrandfatherresentedThecriticsofthesocialsecuritysystembelievethatit
JobseekersinBritainsayemployersare【B1】______applicants’degreesandcertificates.Theyaremakingtheirownentranceexams
最新回复
(
0
)