首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的xn,作xn-1=f(xn)(n=0,1,2,…),证明:xn存在且满足方程f(x)=x.
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的xn,作xn-1=f(xn)(n=0,1,2,…),证明:xn存在且满足方程f(x)=x.
admin
2018-08-12
54
问题
设函数f(x)可导且0≤f’(x)≤
(k>0),对任意的x
n
,作x
n-1
=f(x
n
)(n=0,1,2,…),证明:
x
n
存在且满足方程f(x)=x.
选项
答案
x
n+1
-x
n
=f(x
n
)-f(x
n-1
)=f’(ξ
n
)(x
n
-x
n-1
),因为f’(x)≥0,所以x
n+1
-x
n
,与x
n
-x
n-1
同号,故{x
n
}单调. |x
n
|=|f(x
n-1
)|=|f(x
1
)+∫
x
1
x
n-1
f’(x)dx|≤|f(x
1
)|+|∫
x
1
x
n-1
f’(x)dx|≤|f(x
1
)|+∫
-∞
+∞
[*]dx=|f(x
1
)|+πk, 即{x
n
}有界,于是[*]x
n
存在, 根据f(x)的可导性得f(x)处处连续,等式x
n+1
=f(x
n
)两边令n→∞,得[*]x
n
=f([*]x
n
),原命题得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/2Gj4777K
0
考研数学二
相关试题推荐
就k的不同取值情况,确定方程x3-3x+k=0根的个数.
设z=,其中f,g二阶可导,证明:
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的1/8,求全部融化需要的时间.
设A为n阶矩阵,且|A|a≠0,则|(kA)*|=_______.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),
求不定积分
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
设an为曲线y=xn与y=xn+1(n=1,2,…)所围区域的面积,记.求S1,S2的值.
(1995年)设f(χ)和φ(χ)在(-∞,+∞)内有定义,f(χ)为连续函数,且f(χ)≠0,φ(χ)有间断点,则
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
随机试题
简述领导者树立法治观念的基本要求。
要选择光标所在段落,可_______该段落。
A.1级B.2级C.3级D.4级E.5级肢体能抬离床面,但不能对抗阻力,其肌力级别是
有关病毒标本的采集和运送,不正确的方法是
输卵管壶腹部妊娠其多见的结果为
王女士夫妇今年均为35岁,两人打算55岁退休,预计生活至85岁,王女士夫妇预计在55岁时的年支出为107万元,现在家庭储蓄为10万元。假设通货膨胀率保持3%不变,退休前,王女士家庭的投资收益率为8%,退休后,王女士家庭的投资收益率为3%。王女士夫妇一共
对被辞退的人员,3年内不得再录用为人民警察。()
2014年我国实施“单独两孩”生育政策,出生人口1687万人,比上年增加47万人。2016年实施“全面两孩”生育政策,出生人口1786万人,比上年增加131万人;出生率与“十二五”时期年平均出生率相比,提高了0.84个千分点。201
高校云集了我国众多的高科技人员和研发团队,是我国科研的“富矿”。近年来,在国家鼓励创办研究型大学的政策指引和支持下,在“大众创业、万众创新”的推动下,高校的重大科研成果不断涌现,有的弥补了一些领域的空缺,有的则站在了世界科研领域的巅峰。这些重大科研成果,有
判断下列句子使用的修辞手法,正确的一组是:①事实先生跑将出来,给这些空谈家一瓢冷水。②然而几个人既然起来,你不能说决没有毁坏这铁屋子的希望。③有几个“慈善”的老板到菜场上去收集一些菜叶,用盐一浸,这就是他们难得的“佳肴”。④为什么语
最新回复
(
0
)