首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设,l元非齐次线性方程组Ax=b有解η*,r(A)=r<n,证明:方程组Ax=b有n一r+1个线性无关的解,而且这n—r+1个解可以线性表示方程组Ax=b的任一解.
设,l元非齐次线性方程组Ax=b有解η*,r(A)=r<n,证明:方程组Ax=b有n一r+1个线性无关的解,而且这n—r+1个解可以线性表示方程组Ax=b的任一解.
admin
2016-04-11
73
问题
设,l元非齐次线性方程组Ax=b有解η
*
,r(A)=r<n,证明:方程组Ax=b有n一r+1个线性无关的解,而且这n—r+1个解可以线性表示方程组Ax=b的任一解.
选项
答案
由条件知齐次线性方程组Ax=0的基础解系含n一r个向量,设这个基础解系为ξ
1
,ξ
2
,…,ξ
n—r
.则向量组 η
*
,η
*
+ξ
1
,…,η
*
+ξ
n—r
(*) 满足题意.首先,由解的性质易知(*)式中的n一r+1个向量均为方程组Ax=b的解;其次,由上题知(*)式 中的向量组线性无关;再次,设x为方程组Ax=b的任一解,则x—η
*
为方程组Ax=0的解,因此x一η
*
可由ξ
1
,…,ξ
n—r
,线性表示,即存在一组常数k
1
,…,k
n—r
,使得 x一η
*
=k
1
ξ
1
+…+k
n—r
ξ
n—r
,得 x=η
*
+k
1
ξ
1
+…+k
n—r
ξ
n—r
, =(1一k
1
一…一k
n—r
)η
*
+k
1
(η
*
+ξ
1
)+…+k
n—r
(η
*
+ξ
n—r
). 即x可由向量组(*)线性表示.综上可知向量组(*)满足要求.
解析
转载请注明原文地址:https://kaotiyun.com/show/2Nw4777K
0
考研数学一
相关试题推荐
设函数f(x)在[0,+∞)内可导,f(0)=1且f’(x)+f(x)-∫0xf(t)dt=0.证明:当x≥0时,e-x≤f(x)≤1.
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f[tx1+(1-t)x2]≤tf(x1)+(1-t)f(x2).证明:
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足________.
设A为n阶矩阵,下列结论正确的是()。
设函数其中g(x)二阶连续可导,且g(0)=1.讨论f’(x)在x=0处的连续性。
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’(1)≠1,则=________.
设函数f(u)可导,y=f(sinx)当自变量x在x=π/6处取得增量△x=,相应的函数增量△y,的线性主部为1,则f’(1/2)=().
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
随机试题
_______的目的是提高网络设备的性能价格比,提高网络设备的转发能力。
外来词
在下列影响骨折愈合的说法中,哪项不正确
A.发散B.缓急C.收敛D.泄降E.软坚
某一购销合同约定交货日期为2007年7月1日,供货方甲因材料商乙迟延供料耽搁了加工周期,于2007年7月5日向买受人丙送货,途中恰遇洪水,货物尽损,则该批货物的灭失责任须由()承担。
债务重组划分为3类:自主型、行政型和司法型债务重组。行政型债务重组主要是指()
债券的构成要件是()。
一位研究者认为小学阶段可能是数学自我效能感形成的重要时期。该研究者选取一年级(12名)、三年级(14名)和五年级(14名)小学生,测量其数学自我效能感。经过计算得知三个年级学生的方差相等。统计检验得到F值为3.00。经查表知F0.05(3.40)=2.84
计算机病毒是指“能够侵入计算机系统并在计算机系统中潜伏、传播,破坏系统正常工作的一种具有繁殖能力的()。”
"Brazilhasbecomeoneofthedevelopingworld’sgreatsuccessesatreducingpopulationgrowth—butmorebyaccidentthanbydesi
最新回复
(
0
)