首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
要使都是线性方程组Ax=0的解,只要系数矩阵A为( ).
要使都是线性方程组Ax=0的解,只要系数矩阵A为( ).
admin
2020-09-25
78
问题
要使
都是线性方程组Ax=0的解,只要系数矩阵A为( ).
选项
A、
B、
C、
D、
答案
A
解析
α,α线性无关,以α,α为行向量作矩阵
.作方程组Bx=0,即
其基础解系为η=(-2,1,1)
T
.以η
T
作为行向量得到矩阵A=η
T
=(-2,1,1),从而可得方程组Ax=0,即一2x
1
+x
2
+x
3
=0. ①
因为Bη=0,故α
1
T
η=0,α
2
T
η=0,于是η
T
α
1
=0,η
T
α
2
=0,即Aα
1
=0,Aα
2
=0,所以α
1
,α
2
均为方程组①的解,从而可得A即为所求的系数矩阵.故选A.
转载请注明原文地址:https://kaotiyun.com/show/2Px4777K
0
考研数学三
相关试题推荐
设A=,B是3阶非零矩阵,且AB=O,则Ax=0的通解是__________.
设A,B均为3阶矩阵,且满足AB=2A+B,其中A=,则|B-2E|=_______.
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
已知矩阵A=只有一个线性无关的特征向量,那么A的三个特征值是________。
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
已知矩阵,若线性方程组Ax=b有无穷多解,则a=________.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
[2015年]设函数f(x)在定义域I上的导数大于零.若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.
设f=xTAx,g=xTBx是两个n元正定二次型,则下列未必是正定二次型的是()
随机试题
离心泵内导轮的作用是()。
已知北京市的吸烟率低于天津市的吸烟率,但北京市和天津市根据2000年全国行为危险因素监测资料计算的粗吸烟率分别为32.5%和30.5%。造成以上结果最可能原因为以下哪个
良性与恶性肿瘤判定中,最有诊断意义的是
火灾应急广播应设备用扩音机,其容量不应小于火灾应急广播扬声器容量较大的()扬声器容量的总和。
税务管理包括()。
建立社会主义市场经济体制首先要使()。
人眼的光学系统跟传统的照相机是十分类似的。但照相机只是把外界景物的图像映在照相软片上,人眼却并不是把投射到视网膜上的图像_______地传给大脑,而是先对图像进行信息加工,抽取线段、角度、弧度、色度和明暗对比等包含重要信息的简单特征,并把它们______成
向指导老师李老师发一个E-mail,并将指定文件夹下的文本文件lunwen.txt作为附件一起发出。具体内容如下:[收件人]Lifr@mail.beihang.com[抄送][主题]论文初稿[函件内容]“李老师
Therearemanymedicalproblemsinthemodernsociety.Oneofthemostalarmingmedicalproblemsintheworldisa【1】diseasenam
【B1】【B8】
最新回复
(
0
)