首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
要使都是线性方程组Ax=0的解,只要系数矩阵A为( ).
要使都是线性方程组Ax=0的解,只要系数矩阵A为( ).
admin
2020-09-25
57
问题
要使
都是线性方程组Ax=0的解,只要系数矩阵A为( ).
选项
A、
B、
C、
D、
答案
A
解析
α,α线性无关,以α,α为行向量作矩阵
.作方程组Bx=0,即
其基础解系为η=(-2,1,1)
T
.以η
T
作为行向量得到矩阵A=η
T
=(-2,1,1),从而可得方程组Ax=0,即一2x
1
+x
2
+x
3
=0. ①
因为Bη=0,故α
1
T
η=0,α
2
T
η=0,于是η
T
α
1
=0,η
T
α
2
=0,即Aα
1
=0,Aα
2
=0,所以α
1
,α
2
均为方程组①的解,从而可得A即为所求的系数矩阵.故选A.
转载请注明原文地址:https://kaotiyun.com/show/2Px4777K
0
考研数学三
相关试题推荐
已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=________。
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
已知矩阵,若线性方程组Ax=b有无穷多解,则a=________.
设A是三阶实对称矩阵,E三阶单位矩阵,若A2+A=2E,且|A|=4,则二次型xTAx的规范形为()
(2013年)当x→0时,1一cosx.cos2x.cos3x与axn为等价无穷小,求n与a的值.
已知线性方程组(1)a,b为何值时,方程组有解?(2)在方程组有解时,求出方程组的导出组的一个基础解系,并用它表示方程组的全部解.
[2016年]设二次型f(x1,x2,x3)=a(x12+x22+x32)+2x1x2+2x2x3+2x3x1的正、负惯性指数分别为1,2,则().
[2015年]设二次型f(x1,x2,x3)在正交变换X=PY下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换X=QY下的标准形为().
随机试题
在国际竞争性招标过程中,从刊登招标广告或发售招标文件算起,给予投标商准备投标的时间不得少于()天。
不实行资本金制度的项目是()。
施工安全信息保证体系的工作内容包括:①信息收集;②确保信息工作条件;③信息处理;④信息服务。正确的工作顺序是()。
背景:某市一办公楼是6层内浇外砌砖混结构,总建筑面积6500m2。该工程1999年8月开工,2000年11月竣工。经市质量监督站核定达不到合格等级,建设单位委托法定检测单位检测,结论是:该楼内墙混凝土强度不满足设计要求,整栋房屋不满足8度抗震设防要求。
社会主义的本质是解放生产力,发展生产力,消灭剥削,消除两极分化,最终达到()。
设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且,证明(1)中的x0
微分方程(6x+y)dx+xdy=0的通解是_______
PresidentBarackObamaclaimedprogressWednesdayinhissecond-termdrivetocombatclimatechangebutsaidmoremustbedonet
设循环队列的存储空间为Q(1:100),初始状态为空。现经过一系列正常操作后,front=49,则循环队列中的元素个数为
Manyadelegatewasinfavorofhisproposalthataspecialcommittee______toinvestigatetheincident.
最新回复
(
0
)