首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,a)T,β=(1,b,3,2)T. ①a取什么值时α1,α2,α3,α4线性相关?此时求α1,α2,α3,α4的一个极大线性无关组,并且把其余向量用
α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,a)T,β=(1,b,3,2)T. ①a取什么值时α1,α2,α3,α4线性相关?此时求α1,α2,α3,α4的一个极大线性无关组,并且把其余向量用
admin
2020-07-02
104
问题
α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,—1,—3)
T
,α
4
=(0,0,3,a)
T
,β=(1,b,3,2)
T
.
①a取什么值时α
1
,α
2
,α
3
,α
4
线性相关?此时求α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并且把其余向量用该极大线性无关组线性表出.
②在α
1
,α
2
,α
3
,α
4
线性相关的情况下,b取什么值时β可用α
1
,α
2
,α
3
,α
4
线性表示?写出一个表示式.
选项
答案
两个小题都关系到秩,α
1
,α
2
,α
3
,α
4
线性相关[*]r(α
1
,α
2
,α
3
,α
4
)<4;β可用α
1
,α
2
,α
3
,α
4
线性表示[*]r(α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
).因此应该从计算这两个秩着手. 以α
1
,α
2
,α
3
,α
4
,β为列向量构造矩阵(α
1
,α
2
,α
3
,α
4
,β),然后用初等行变换把它化为阶梯形矩阵: (α
1
,α
2
,α
3
,α
4
,β)= [*] ①r(α
1
,α
2
,α
3
,α
4
)<4[*]a=3.α
1
,α
2
,α
3
是α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并且 α
4
=—6α
1
+6α
2
—3α
3
. (α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
)=3,则b=2.β=—7α
1
+8α
2
—3α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/2Tx4777K
0
考研数学三
相关试题推荐
.
设A为n阶非零矩阵,且A2=A,r(A)=r.求|SE+A|.
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记求U和V的联合分布;
设随机变量X和Y分别服从B(1,)和B(1,),已知P{x=0,Y=0}=求:X和Y的相关系数;
设①a,b取什么值时存在矩阵X,满足AX—CX=B?②求满足AX—CX=B的矩阵X的一般形式.
已知总体X服从正态分布N(μ,σ2),X1,X2,…,X2n是取自总体X容量为2n的简单随机样本,当σ2未知时,为σ2无偏估计,则C=______,D(Y)=_____.
设A是三阶实对称矩阵,其特征值为λ1=3,λ2=λ3=5,且λ1=3对应的线性无关的特征向量为α1=,则λ2=λ3=5对应的线性无关的特征向量为______.
一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为________.
曲线y=的渐近线是________.
(2012年)已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。(I)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
随机试题
根管器械的标准化内容有
伤寒患者皮疹开始出现的时间是()
某药材,类球形、椭圆形或卵圆形,表面有横向环状浅沟纹和细小突起的须根痕,底部有瘤状芽痕。断面黄白色,粉性,有多数细孔。气微,味微苦。该药材的主产区为
下列各项中,关于级别管辖,说法正确的有()。
()是指资产评估机构开展资产评估业务形成的,反映资产评估程序实施情况、支持评估结论的工作底稿、资产评估报告及其他相关资料。
下列各种物资中,不应当作为企业存货核算的是()。
社会保险经办机构及其工作人员如果给社会保险基金、用人单位或者个人造成损失的,依法承担赔偿责任;如果有下列行为之一的,由社会保险行政部门责令改正()。
“老年丧失期观”认为老年期丧失的内容包括()
阅读材料,根据要求完成任务。材料一《义务教育化学课程标准(2011年版)》关于“质量守恒定律”的内容标准为:“认识质量守恒定律,能说明化学反应中的质量关系”;活动与探究建议:“实验探究化学反应前后的质量关系”。材料二某化学教科书
Whydoesthemanliketobeaparkranger?
最新回复
(
0
)