首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,a)T,β=(1,b,3,2)T. ①a取什么值时α1,α2,α3,α4线性相关?此时求α1,α2,α3,α4的一个极大线性无关组,并且把其余向量用
α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,a)T,β=(1,b,3,2)T. ①a取什么值时α1,α2,α3,α4线性相关?此时求α1,α2,α3,α4的一个极大线性无关组,并且把其余向量用
admin
2020-07-02
72
问题
α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,—1,—3)
T
,α
4
=(0,0,3,a)
T
,β=(1,b,3,2)
T
.
①a取什么值时α
1
,α
2
,α
3
,α
4
线性相关?此时求α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并且把其余向量用该极大线性无关组线性表出.
②在α
1
,α
2
,α
3
,α
4
线性相关的情况下,b取什么值时β可用α
1
,α
2
,α
3
,α
4
线性表示?写出一个表示式.
选项
答案
两个小题都关系到秩,α
1
,α
2
,α
3
,α
4
线性相关[*]r(α
1
,α
2
,α
3
,α
4
)<4;β可用α
1
,α
2
,α
3
,α
4
线性表示[*]r(α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
).因此应该从计算这两个秩着手. 以α
1
,α
2
,α
3
,α
4
,β为列向量构造矩阵(α
1
,α
2
,α
3
,α
4
,β),然后用初等行变换把它化为阶梯形矩阵: (α
1
,α
2
,α
3
,α
4
,β)= [*] ①r(α
1
,α
2
,α
3
,α
4
)<4[*]a=3.α
1
,α
2
,α
3
是α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并且 α
4
=—6α
1
+6α
2
—3α
3
. (α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
)=3,则b=2.β=—7α
1
+8α
2
—3α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/2Tx4777K
0
考研数学三
相关试题推荐
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1—S2
设X1,X2,…,Xn(n>2)为取自总体N(0,1)的简单随机样本,为样本均值,记Yi=Xi一,i=1,2,…,n。求:Y的方差D(Yi),i=1,2,…,n;
设A是n阶正定矩阵,证明|A+2E|>2n.
设随机变量X与Y相互独立,且X服从参数为p的几何分布,即P{X=m}=pqm-1,m=1,2,…,0<p<1,q=1-p,Y服从标准正态分布N(0,1).求:(Ⅰ)U=X+Y的分布函数;(Ⅱ)V=XY的分布函数.
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记求U和V的联合分布;
求.
若β=(1,3,0)T不能由α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T线性表出,则a=______.
(98年)一商店经销某种商品,每周的进货量X与顾客对该种商品的需求量Y是两个相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,可以其他商店调剂供应,这时每单位商品的售出获利润为500元
n阶行列式
随机试题
尿路感染最常见的细菌是
A、男性乳腺发育B、食管静脉曲张C、氨中毒D、凝血因子减少E、黄疸肝硬化时,肝门静脉高压可引起
有高热惊厥史的患儿家长很担心孩子的预后,护士应给予适当的解释是
按贷款的用途,房地产贷款可以划分为()。
河口水质的取样,在预测水温时,要测日平均水温,一般可采用每隔()测一次的方法求平均水温。
企业内部主管会计工作的机构是()。
下列关于芝加哥期货交易所的说法,不正确的是( )。
为了更好地倡导惜粮节约,市委宣传部要对机关食堂浪费现象进行调查,并开展杜绝浪费的教育活动。你是宣传部的一员,领导把这个任务交给了你,请拟定宣传主题并谈谈你将如何开展本次宣传活动。
在软件设计中不使用的工具是()。
Tomeatstoomuchandheoftendoexercises.Tomisveryhealthy.
最新回复
(
0
)