首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知αi=(αi1,αi2…,αin)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
已知αi=(αi1,αi2…,αin)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
admin
2018-07-27
99
问题
已知α
i
=(α
i1
,α
i2
…,α
in
)
T
(i=1,2,…,r;r<n)是n维实向量,且α
1
,α
2
,…,α
r
线性无关.已知β=(b
1
,b
2
,…,b
n
)
T
是线性方程组
的非零解向量.试判断向量组α
1
,α
2
,…,α
r
,β的线性相关性.
选项
答案
由题设条件有β
T
α
i
=0(i=1,2,…,r).设 k
1
α
1
+…+k
r
α
r
+k
r+1
β=0 (*) 两端左乘β
T
,得k
r+1
β
T
β=0,又β≠0,[*]β
T
β=‖β‖
2
>0,故k
r+1
=0 代入(*)式,得k
1
α
1
+…+k
r
α
r
=0,又α
1
,…,α
r
线性无关,所以有k
1
=…=k
r
=0,因此α
1
,…,α
r
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/2WW4777K
0
考研数学三
相关试题推荐
若α1=(1,0,5,2)T,α2=(3,-2,3,-4)T,α3=(-1,1,t,3)T线性相关,则t=______.
设n阶矩阵A=,证明行列式|A|=(n+1)an.
计算行列式的值:
设矩阵A的伴随矩阵A*=,且ABA-1=BA-1+3E.①求矩阵B.
已知a,b,c不全为零,证明方程组只有零解.
四元方程组Ax=b的三个解是α1,α2,α3,其中α1=(1,1,1,1)T,α2+α3=(2,3,4,5)T,如r(A)=3,则方程组Ax=b的通解是______.
设A是3阶实对称矩阵,A的特征值是6,-6,0,其中λ=6与λ=0的特征向量分别是(1,a,1)T及(a,a+1,1)T,求矩阵A.
设A是3阶矩阵,且各行元素之和都是5,则A必有特征向量_______.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
随机试题
《现代汉语词典》(商务印书馆出版)属于()
Internet上使用的网络协议是基于________________协议。
支持:ITP诊断的是()(2005年)
当事人订立的损害社会公共利益的合同,应从( )时起没有法律约束力。
()是《巴塞尔新资本协议》的第三支柱。
2016年7月31日,甲公司发现2015年漏记一项长期股权投资的减值,该项长期股权投资是甲公司对A公司的具有控制权的投资,长期股权投资账面余额为1080万元,以前未计提减值准备,2015年12月31日,A公司财务状况出现严重恶化。长期股权投资的可收回金额为
刑事责任年龄是指法律规定行为人对自己的犯罪行为负刑事责任必须达到的年龄。下列关于刑事责任年龄说法正确的有()。
远程登录之所以能允许任意类型的计算机之间进行通信,是因为()。
OurheadmastertooktheAmericangueststovisitourschool.Ourheadmaster______theAmericanguests______ourschool.
HowtoBuildaStrongTeamSpirit1.Threeprinciplestobuildingateam■Teamworkisbasedon【T1】______【T1】_
最新回复
(
0
)