首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知αi=(αi1,αi2…,αin)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
已知αi=(αi1,αi2…,αin)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
admin
2018-07-27
77
问题
已知α
i
=(α
i1
,α
i2
…,α
in
)
T
(i=1,2,…,r;r<n)是n维实向量,且α
1
,α
2
,…,α
r
线性无关.已知β=(b
1
,b
2
,…,b
n
)
T
是线性方程组
的非零解向量.试判断向量组α
1
,α
2
,…,α
r
,β的线性相关性.
选项
答案
由题设条件有β
T
α
i
=0(i=1,2,…,r).设 k
1
α
1
+…+k
r
α
r
+k
r+1
β=0 (*) 两端左乘β
T
,得k
r+1
β
T
β=0,又β≠0,[*]β
T
β=‖β‖
2
>0,故k
r+1
=0 代入(*)式,得k
1
α
1
+…+k
r
α
r
=0,又α
1
,…,α
r
线性无关,所以有k
1
=…=k
r
=0,因此α
1
,…,α
r
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/2WW4777K
0
考研数学三
相关试题推荐
求微分方程的通解.
证明极限不存在.
向量组α1=(1,-1,3,0)T,α2=(-2,1,a,1)T,α3=(1,1,-5,-2)T的秩为2,则a=______.
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
已知α1,α2,…,αs是互不相同的数,n维向量αi=(1,αi,αi2,…,αin-1)T(i=1,2,…,s),求向量组α1,α2,…,αs的秩.
已知α1=(a,a,a)T,α2=(-a,a,b)T,α3=(-a,-a,-b)T线性相关,则a,b满足关系式_______.
设A是3阶实对称矩阵,特征值是0,1,2.如果λ=0与λ=1的特征向量分别是α1=(1,2,1)T与α2=(1,-1,1)T,则λ=2的特征向量是_______.
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
设A为三阶实对称矩阵,且存在可逆矩阵又A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量为α=[2,5,一1]T.(1)求λ0的值;(2)计算(A*)一1;(3)计算行列式|A*+E|.
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,一3,0,则|B-1+2E|=_________.
随机试题
油田生产单位要定期进行安全检查,基层队每()一次。
依照《行政复议法》的规定,对于行政行为不服的,可以自知道该具体行政行为之日起()内向复议机关提出复议申请。
下列选项中,属于无芽胞厌氧菌感染特征的是
高血压危象药物治疗可首选
中国收货人甲公司从国外购货,取得的提单上载明“凭指示”的字样,承运人为中国乙公司。当甲公司凭正本提单到港口提货时,被乙公司告知货物已不在其手中。后甲公司在中国法院对乙公司提起索赔诉讼。乙公司在下列哪种情形下不可免除交货责任?()
按支出用途分类,我国的财政支出共有()项,主要包括基本建设支出等。
在系统中设置单位信息时,如果企业类型选择了工业模式,则()。
(36)havegreetedQueenElizabethⅡassheappearedoutside(37)inapinksuitandhatonher80thbirthday.And(38)workingg
June15DearSir,Yourshipmentoftwelvethousand"Smart"watcheswasreceivedbyourcompanythismorning.However,wewi
Directions:Forthispart,youareallowed30minutestowriteacompositiononthetopic:DoesHeroismStillWork?Youshouldw
最新回复
(
0
)