首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求正交变换化二次型x12+x22+x32+4x1x2-4x2x3-4x1x3为标准形.
求正交变换化二次型x12+x22+x32+4x1x2-4x2x3-4x1x3为标准形.
admin
2018-06-27
57
问题
求正交变换化二次型x
1
2
+x
2
2
+x
3
2
+4x
1
x
2
-4x
2
x
3
-4x
1
x
3
为标准形.
选项
答案
二次型矩阵A=[*],由特征多项式 |λE-A|=[*]=(λ+3)(λ-3)
2
, 得特征值为λ
1
=λ
2
=3,λ
3
=-3. 由(3E-A)x=0得基础解系α
1
=(-1,1,0)T,α
2
=(-1,0,1)
T
,即λ=3的特征向量是α
1
,α
2
. 由(-3E-A)x=0得基础解系α
3
=(1,1,1)
T
. 对α
1
,α
2
经Schmidt正交化,有 β
1
=α
1
,β
2
=αα
2
-[*] 单位化,得 [*] 那么,令x=Qy,其中Q=(γ
1
,γ
2
,γ
3
),则有f(x
1
,x
2
,x
3
)=x
T
Ax=y
T
Ay=3y
1
2
+3y
2
2
-3y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/2ik4777K
0
考研数学二
相关试题推荐
微分方程y"=2y’+2y=e2的通解为________.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(2)利用(1)的结论计算定积分|sinx|arct
设方程的全部解均以,π为周期,则常数a取值为
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)0,则方程f(x)=0在[a,+∞)内有且仅有一个实根.
设函数f(x)在[a,+∞)内二阶可导且f’’(x)a,f’(b)>0,f’(b)
设xOy平面第一象限中有曲线F:y=y(x),过点y’(x)>0.M(x,y)为F上任意一点,满足:弧段的长度与点M处厂的切线在x轴上的截距之差为导出y=y(x)满足的微分方程和初始条件;
设其中f(s,t)有连续的二阶偏导数.求du.
已知矩阵只有一个线性无关的特征向量,那么矩阵A的特征向量是__________.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.求这个方程和它的通解:
随机试题
世界贸易组织的各项协议所涉及的领域不包括()。
某研究者为了评价拜新同治疗高血压的效果,从10家市级医院中随机抽取200名高血压患者,并随机分为两组,一组服用拜新同,另一组服用安慰剂,随访6个月,观察血压的变化情况,比较、分析两组的效果,以判断拜新同的疗效。这种研究属于
急性左心功能不全,常伴有
下列现象,违反了诚信原则的有()。
在Windows98中许多应用程序的“文件”菜单中都有“保存”和“另存为”两个命令,下列说法中正确的是()。
不属于风险分析好处的是()。
下列各项中,免征房产税的有()。
在事实上导游证无法使用的情况下,行政机关对其进行取消登记的行政管理行为是对导游证的()。
简述古代西亚的主要文化成就。(华南师范大学2006年世界古代中世纪史真题)
说明页表的组成与程序逻辑地址到内存物理地址的变换过程。快表是一定要有的吗?说明快表内容的组成与读写原理。
最新回复
(
0
)