首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
设A= (1)问k为何值时A可相似对角化? (2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
admin
2018-11-23
48
问题
设A=
(1)问k为何值时A可相似对角化?
(2)此时作可逆矩阵U,使得U
-1
AU是对角矩阵.
选项
答案
(1)求A的特征值: |λE-A|=[*]=(λ-1)(λ+1)
2
. 于是A的特征值为1(一重)和-1(二重). 要使A可对角化,只需看特征值-1.要满足3-r(A+E)=2,即r(A+)=1, [*] 得k=0, [*] (2)求属于-1的两个线性无关的特征向量,即求(A+E)X=0的基础解系: [*] 得(A+E)X=0的同解方程组 2χ
1
+2χ
2
-χ
3
=0 得基础解系η
1
=(1,0,2)
T
,η
2
=(0,1,1)
T
. 求属于1的一个特征向量,即求(A-E)X=0的一个非零解: [*] 得(A-E)X=0的同解方程组[*] 得解η=(1,0,1)
T
. 令U=(η
1
,η
2
,η
3
),则 U
-1
AU=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/2nM4777K
0
考研数学一
相关试题推荐
求解线性方程组
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵.
设X和Y是相互独立的随机变量,其概率密度分别为其中λ>0,μ>0是常数,引入随机变量求E(Z)和D(Z).
已知X,Y为随机变量且P{X≥0,Y≥0}=,设A={max(X,Y)≥0},B={max(X,Y)<0,min(X,Y)<0},C={max(X,Y)≥0,min(X,Y)<0},则P(A)=_________,P(B)=_________,P(C)=_
设离散型随机变量X的概率函数为P{x=i}=pi+1,i=0,1,则p=________.
设函数μ(x,y,z)=1+x2/6+y2/12+z2/18,单位向量则=___________.
已知向量组与向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a、b的值.
计算下列n阶行列式:
设α1,…,αn-1,β1,β2均为n维实向量,α1,…,αn-1线性无关,且βj(j=1,2)与α1.….αn-1均正交.证明:β1与β2线性相关.
随机试题
能产生LTA的细菌是
管电压在摄影条件选择中的意义,错误的是
保管特殊类型药材必须具有
在公共场所附近开挖沟槽时,应设防护设施,夜间设置照明灯和警示红灯。()
在某些情况下,被保险人患病或遭受意外伤害,最终是否残疾在短期内难以判定,为此保险公司规定一个定残期限,过了该期限后仍无明显好转征兆的,认定为全残。这种情况称为( )。
立面图的绘制中整个建筑的外轮廓尺寸线用( )线绘制。
信用风险管理委员会或类似机构可以考虑重新设定/调整限额的情况有()。
饮水时,应注意遵循少次多量的原则。
把对集体与个人的管理结合起来的班级管理是()。
A、Thecablecarride.B、GoldenGatePark.C、Fisherman’sWharf.D、Busesandstreetcars.A男士问女士最喜欢旧金山的什么,女士回答:“我也不知道,这很难说。我喜欢金门大桥
最新回复
(
0
)