首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记 αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5. 问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由; (2)α4能否由α1,α2,α
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记 αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5. 问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由; (2)α4能否由α1,α2,α
admin
2015-08-14
65
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,一1,2,0]
T
.记 α
j
=[a
1j
,a
2j
,a
3j
,a
4j
]
T
,j=1,2,…,5.
问:(1)α
4
能否由α
1
,α
2
,α
3
,α
5
线性表出,说明理由;
(2)α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由.
选项
答案
(1)α
4
能由α
1
,α
2
,α
3
,α
5
线性表出. 由线性非齐次方程的通解[2,1,0,1]
T
+k[1,一1.2,0]
T
知 α
5
=(k+2)α
1
+(一k+1)α
2
+2kα
3
+α
4
,故 α
4
=一(k+2)α
1
一(一k+1)α
2
—2kα
3
+α
5
. (2)α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次方程的基础解系只有一个非零向量,故r(α
1
,α
1
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4—1=3,且由对应齐次方程的通解知,α
1
一α
2
+2α
3
=0,即α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/bM34777K
0
考研数学二
相关试题推荐
设α1,α2,α3,α4,α5均是4维列向量,记A=(α1,α2,α3,α4),B=(α1,α2,α3,α4,α5)。已知方程Ax=α5有通解k(1,-1,2,0)T+(2,1,0,1)T,其中k是任意常数,则下列向量不是方程Bx=0的解的是(
设在x=0处连续,则a=________.
1n/(n2+n)≤1/(n2+1)+1/(n2+2)+…n/(n2+1)得n2/(n2+n)≤n/(n2+1)+n/(n2-2)+…n/(n2-n)≤n2/(n2+1),
[*]
确定常数a,c的值,使得,其中c为非零常数.
设α是n维单位列向量,A=E-αT.证明:r(A)<n.
设幂级数的系数{an}满足an=2,nan-1=n一1,n=1,2,3,….求此幂级数的和函数S(x),其中x∈(一1,1).
设积分I=∫1+∞(p>0,q>0)收敛,则()
设D={(x,y)∣1≤x2+y2≤2x,y≥0),计算积分
设f(x)在[-π,π]上可积,且ak,bk是f(x)的傅里叶系数,试证对任意自然数n,成立不等式
随机试题
在Excel2010单元格中直接输入以下数据,被系统确认为字符型数据的是______________。
用维卡仪法测定水泥标准稠度用水量时,要求整个操作应在()时间内完成。
项目执行管理主要是指()对项目的管理。
根据税收征收管理法律制度的规定,下列说法中正确的有()。
早期人类的骸骨清楚地显示他们比现代人更少有牙齿方面的问题。因此,早期人类的饮食很可能与今天的非常不同。以下哪项陈述最能强化上述论证?
非营利性组织,是指不以营利为主要目的的社会组织。根据上述定义,下列不属于非营利性组织的是:
甲驾车在某路段行驶时,与乙驾驶的车辆相刮,致使甲的车受损,甲下车对乙进行殴打造成轻微伤后驾车离去。公安机关为查处此案,对甲进行传唤,甲却回避。公安机关为使甲来接受调查,将甲的汽车扣押。公安机关的扣车行为属于下列哪项?()
[*]
Allpossible______willbetakentoensurethatthismineisentirelyaccident-andinjury-free.
ThereareotherproblemswhichIdon’tproposeto______atthemoment.
最新回复
(
0
)