首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α是n维单位列向量,A=E-ααT.证明:r(A)<n.
设α是n维单位列向量,A=E-ααT.证明:r(A)<n.
admin
2018-05-21
36
问题
设α是n维单位列向量,A=E-αα
T
.证明:r(A)<n.
选项
答案
A
2
=(E-αα
T
)(E-αα
T
)=E-2αα
T
+αα
T
.αα
T
,因为α为单位列向量,所以α
T
α=1,于是A
2
=A.由A(E-A)=O得r(A)+r(E-A)≤n,又由r(A)+r(E-A)≥r[A+(E-A)]=r(E)=n,得r(A)+r(E-A)=n.因为E-A=αα
T
≠O,所以r(E-A)=r(αα
T
)=r(α)=1,故r(A)=n-1<n.
解析
转载请注明原文地址:https://kaotiyun.com/show/2pr4777K
0
考研数学一
相关试题推荐
设线性方程组已知(1,一1,1,一1)T。是该方程组的一个解,试求:(Ⅰ)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(Ⅱ)该方程组满足x2=x3的全部解。
已知线性方程组Ax=kβ1+β2有解,其中则k=()
设A是三阶矩阵,其特征值是1,3,一2,相应的特征向量依次为α1,α2,α3,若P=(α1,2α3,一α2),则P-1AP=()
设物体在高空中垂直下落,初速度为零,下落过程中所受空气阻力与下落速度的平方成正比,阻力系数k>0。证明下落速度不会超过
设y=e3x(C1cosx+C2sinx)(C1,C2为任意常数)为某二阶常系数齐次线性微分方程的通解,则该方程为________。
设f(x)是连续函数.(1)利用定义证明函数F(x)=∫0xf(t)dt可导,且F’(x)=f(x).(2)当f(x)是以2为周期的周期函数时,证明函数G(x)=2∫0xf(t)dt一x∫02f(t)dt也是以2为周期的周期函数.
设D={(x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明
设A为3阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.求二次型xT(A*)-1x的表达式,并确定其正负惯性指数.
设3阶矩阵A与B相似,λ1=1,λ2=-2是矩阵A的两个特征值,且矩阵B的行列式|B|=1,则行列式|A*+E|=________.
随机试题
抵押+合同法+民事诉讼+刑事诉讼耿涛于1986年购买一处房产,于1988年6月依法取得房屋所有权证。1993年,耿涛迁往外地居住,将房屋租赁给其朋友翟继光,并将房屋所有权证交给翟继光保管。1999年9月,翟继光向某市房屋管理局申请办理该房屋的所有权转移登记
甲、乙欲签订一份商品购销合同,甲要求乙提供商品的鉴定,丙愿意为该种商品提供鉴定,丁为甲的业务代理人,并代表甲与乙签订了经济合同,这一事项中,属于印花税纳税人的为()
控制的基础是()。
计算机的IP地址可以是202.255.256.112。()
对乳腺癌最有效的检出方法是
某女,每于经期或经前一二日小腹胀痛拒按,月经量少色紫暗,或伴胸胁乳房胀痛。诊断为
“以小人之心度君子之腹”属于自我防御机制的()。
Geysersareroundnearriversandlakes,wherewaterdrainsthroughfinesoil______.
发展非公有制经济对加快我国生产力发展的重要作用,的表现是
Whyaresleddogssaidtobephysicalwonders?FortheentireIditarodrace,asleddogteamhastoeatsomuchasto______.
最新回复
(
0
)