首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量α不是二阶方阵A的特征向量. (1)证明:α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化.
设二维非零向量α不是二阶方阵A的特征向量. (1)证明:α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化.
admin
2018-01-23
66
问题
设二维非零向量α不是二阶方阵A的特征向量.
(1)证明:α,Aα线性无关;
(2)若A
2
α+Aα-6α=0,求A的特征值,讨论A可否对角化.
选项
答案
(1)若α,Aα线性相关,则存在不全为零的数k
1
,k
2
,使得k
1
α+k
2
Aα=0,显然k
2
≠ 0,所以Aα=[*],矛盾,所以α,Aα线性无关. (2)由A
2
α-Aα-6α=0,得(A
2
+A-6E)α=0, 因为α≠0,所以r(A
2
+A-6E)<2,从而|A
2
+A-6E|=0,即 |3E+A|.|2E-A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)α=0,得 (2E-A)α=0,且Aα=2α,矛盾; 若|2E-A|≠0,则2E-A可逆,由(2E-A)(3E+A)α=0,得 (3E+A)α=0,即Aα=-3α,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩 阵A有两个特征值-3,2,故A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/GNX4777K
0
考研数学三
相关试题推荐
设f(x)=,则f(x)的可去间断点的个数为().
设A是三节矩阵,P是三阶可逆矩阵,已知P-1AP=,且Aα1=α1,Aα2=α2,Aα3=0,则p是().
设平面区域D由x=0,y=0,x+y=1/2,x+y=1围成,若I1=[ln(x+y)]7dxdy,I2=(x+y)7dxdy,I3=[sin(x+y)]7dxdy,则I1,I2,I3之间的大小顺序为().
设f(x)是(一∞,+∞)内以T为周期的连续奇函数,则下列函数中不是周期函数的是().
求解差分方程yx+1+3yx=x.2x.
某商品需求量Q对p的弹性εp=(0<p<b),又知该商品的最大需求量为a(a>0),求需求量Q对价格P的函数关系.
差分方程yx+1一2yx=3x2的通解为______________。
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x一e-x是某二阶线性非齐次微分方程的三个解,求此微分方程.
设矩阵A=有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵.
设n阶(n≥3)矩阵A的主对角元均为1,其余元素均为a,且方程组AX=0只有一个非零解组成基础解系,则a=_________.
随机试题
在报告的写作中,信息的主要来源是
WelcometoFranklinHotel.Tomakeyourstayasenjoyableaspossible,wehopeyouwilluseourfacilities(设施)tothefull.
A.慢性中性粒细胞性白血病B.急性早幼粒细胞性白血病C.急性淋巴细胞性白血病D.慢性粒单核细胞性白血病E.急性单核细胞性白血病化疗过程中易发生或加重DIC的是
男性,45岁,上颌后牙食物嵌塞,要求行冠修复。查:右上6MOD大面积银汞合金充填,死髓牙,牙稳固,叩(一),近中与右上5接触较差.若采用预制桩核.与铸造桩核比较.其最大优点是
C公司是一家冰箱生产企业,全年需要压缩机360000台,均衡耗用。全年生产时间为360天,每次的订货费用为160元,每台压缩机持有费率为80元,每台压缩机的进价为900元。根据经验,压缩机从发出订单到进入可使用状态一般需要5天,保险储备量为2000台。
在一个企业集团内部,财务部可以确定的定位包括()。
小张、小王二人同时从甲地出发,驾车匀速在甲乙两地之间往返行驶。小张的车速比小王快,两人出发后第一次和第二次相遇都在同一地点,那么小张的车速是小王的__________倍。
用于网络软件测试和本地进程间通信的Ping应用程序使用回送地址()。
关系代数是关系操纵语言的一种传统表示方式,它以集合代数为基础,它的运算对象和运算结果均为______。
Bigcitestodayareconfrontedwithveryseriousproblems.Transportisa【C1】______difficulty:someplannersbelievein【C2】_____
最新回复
(
0
)