首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量α不是二阶方阵A的特征向量. (1)证明:α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化.
设二维非零向量α不是二阶方阵A的特征向量. (1)证明:α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化.
admin
2018-01-23
92
问题
设二维非零向量α不是二阶方阵A的特征向量.
(1)证明:α,Aα线性无关;
(2)若A
2
α+Aα-6α=0,求A的特征值,讨论A可否对角化.
选项
答案
(1)若α,Aα线性相关,则存在不全为零的数k
1
,k
2
,使得k
1
α+k
2
Aα=0,显然k
2
≠ 0,所以Aα=[*],矛盾,所以α,Aα线性无关. (2)由A
2
α-Aα-6α=0,得(A
2
+A-6E)α=0, 因为α≠0,所以r(A
2
+A-6E)<2,从而|A
2
+A-6E|=0,即 |3E+A|.|2E-A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)α=0,得 (2E-A)α=0,且Aα=2α,矛盾; 若|2E-A|≠0,则2E-A可逆,由(2E-A)(3E+A)α=0,得 (3E+A)α=0,即Aα=-3α,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩 阵A有两个特征值-3,2,故A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/GNX4777K
0
考研数学三
相关试题推荐
设α1,α2,α3,α4为四维列向量组,且α1,α2,α3线性无关,α4=α1+α2+2α3.已知方程组[α1一α2,α2+α3,一α1+aα2+α3]X=α4有无穷多解.(1)求a的值;(2)用基础解系表示该方程组的通解.
设,B是三阶非零矩阵,且BAT=0则秩r(B)=_________.
设A=,对A以列和行分块,分别记为A=[α1,α2,α3,α4]=[β1,β2,β3]T,其中≠0①,=0②,有下述结论:(1)r(A)=2;(2)α2,α4线性无关.(3)β1,β2,β3线性相关;(4)α1,α2,α3线性相关.上
设f(x)在[0,1]上有连续导数,且f(0)=0.试证明:至少存在一点η∈[0,1],使f′(η)=2f(x)dx.
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为__________.
设A,B为三阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=____________。
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗日中值定理证明不等式f(a+b)≤f(a)+f(b)其中a、b满足条件0≤a≤b≤a+b≤c.
设微分方程及初始条件为(Ⅰ)求满足上述微分方程及初始条件的特解;(Ⅱ)是否存在那种常数y1,使对应解y=y(x)存在斜渐近线,请求出此y1及相应的斜渐近线方程.
设矩阵A=,矩阵B=(kE+A)2,求对角阵A,与B和A相似,并问k为何值时,B为正定阵.
设F(x)=∫xx+2πesintsintdt,则F(x)()
随机试题
有关改善病情药物,下列哪项描述不准确
患者,女,20岁。患糖尿病2年,在家中使用胰岛素治疗,1小时前病人昏迷。检查:皮肤湿冷,血压110/70mmHg,尿素氮4.3mmol/L,二氧化碳结合力21mmol/L。应首先考虑的是:
某妇女,45岁,扪及下腹部有包块半年,并且月经不规则,近3年来,经常感觉胃区不适,内科医师曾诊断为“胃溃疡”。妇科检查:腹水征(+),子宫大小正常,活动,无压痛,双附件区触及一鹅卵大、活动的实体性包块。可能是下列哪一种肿瘤
对边坡进行工程防护的方法包括()
下列哪些不是客户信息的保密原则()。
某个人独资企业投资人聘用甲管理企业事务,如果甲超越权限与善意第三人丙签订了一份买卖合同,则()。
A、B、C、D、A
数据库的物理设计是为一个给定的逻辑结构选取一个适合应用环境的哪种结构,包括确定数据库在物理设备上的存储结构和存取方法?
北京明华中学学生发展中心的小刘老师负责向校本部及相关分校的学生家长传达有关学生儿童医保扣款方式更新的通知。该通知需要下发至每位学生,并请家长填写回执。参照“结果示例1.jpg~结果示例4.jpg”、按下列要求帮助小刘老师编排家长信及回执:在考生文件夹下
A、Hedoesn’twanttochangehisjob.B、Hedoesn’thearthewomanclearly.C、C)D、Hedoesn’twanttobetheboss.C
最新回复
(
0
)