首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维非零向量α不是二阶方阵A的特征向量. (1)证明:α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化.
设二维非零向量α不是二阶方阵A的特征向量. (1)证明:α,Aα线性无关; (2)若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化.
admin
2018-01-23
45
问题
设二维非零向量α不是二阶方阵A的特征向量.
(1)证明:α,Aα线性无关;
(2)若A
2
α+Aα-6α=0,求A的特征值,讨论A可否对角化.
选项
答案
(1)若α,Aα线性相关,则存在不全为零的数k
1
,k
2
,使得k
1
α+k
2
Aα=0,显然k
2
≠ 0,所以Aα=[*],矛盾,所以α,Aα线性无关. (2)由A
2
α-Aα-6α=0,得(A
2
+A-6E)α=0, 因为α≠0,所以r(A
2
+A-6E)<2,从而|A
2
+A-6E|=0,即 |3E+A|.|2E-A|=0,则|3E+A|=0或|2E-A|=0. 若|3E+A|≠0,则3E+A可逆,由(3E+A)(2E-A)α=0,得 (2E-A)α=0,且Aα=2α,矛盾; 若|2E-A|≠0,则2E-A可逆,由(2E-A)(3E+A)α=0,得 (3E+A)α=0,即Aα=-3α,矛盾,所以有|3E+A|=0且|2E-A|=0,于是二阶矩 阵A有两个特征值-3,2,故A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/GNX4777K
0
考研数学三
相关试题推荐
设随机变量X1~N(0,1),X2~B(1,1/2),X3服从于参数为λ=1的指数分布.设 则矩阵A一定是().
=____________.
求解差分方程yx+1+3yx=x.2x.
设向量组I:α1,α2,…,αs,Ⅱ:β1,β2,…,βr,且向量组I可由向量组Ⅱ线性表示,下列结论正确的是()
设实二次型f=XTAX经过正交变换化为标准形f=2y12一y22—y32,又设α=(1,1,1)T满足A*α=α,求A。
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程的解.求方程通解及方程.
求其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域(如图)
设矩阵有一个特征值是3.求正交矩阵P,使(AP)TAP为对角矩阵;
设F(x)=∫xx+2xesintsintdt,则F(x)().
设F(x)=∫xx+2πesintsintdt,则F(x)()
随机试题
个性倾向性
季节性失业
包过滤通常安装在路由器上,而且大多数商用路由器都提供了包过滤的功能。()
真核生物的DNA聚合酶
小儿智力发育加快的时期是()。
【2010年真题】下列评价方法中,属于互斥方型投资方案经济效果动态评价方法的有()。
下列各项中,应计提固定资产折旧的有()。
下列各项中,不符合票据和结算凭证填写要求的是()。
在VisualBasic中,表达式3*2\5Mod3的值是
UrbanInfrastructureUpgradingVocabularyandExpressionsdauntingslumupgradingJamaicafiscalstimulusp
最新回复
(
0
)