首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2= (1,一1,1,一1,2)T,β3
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2= (1,一1,1,一1,2)T,β3
admin
2019-01-19
66
问题
设线性方程组(1)Ax=0的一个基础解系为α
1
=(1,1,1,0,2)
T
,α
2
=(1,1,0,1,1)
T
,α
3
=(1,0,1,1,2)
T
。线性方程组(2)Bx=0的一个基础解系为β
1
=(1,1,一1,一1,1)
T
,β
2
= (1,一1,1,一1,2)
T
,β
3
=(1,一1,一1,1,1)
T
。求:
矩阵C=(A
T
,B
T
)的秩。
选项
答案
线性方程组(3)[*]与线性方程组x
T
(A
T
,B
T
)=0等价,而方程组(3)的基础解系只含一个向量,故矩阵C=(A
T
,B
T
)的秩r(C)=5—1=4。
解析
转载请注明原文地址:https://kaotiyun.com/show/3BP4777K
0
考研数学三
相关试题推荐
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为志k1(0,1,1,0)T+k2(-1,2,2,1)T.(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解
问a、b为何值时,线性方程组有唯一解、无解,有无穷多组解?并求出有无穷多解时的通解.
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为_______.
设行列式D=不具体计算D,试利用行列式的定义证明D=0.
设总体X~B(m,p),其中m已知,p未知,从X中抽得简单样本X1,…,Xn,试求p的矩估计和最大似然估计.
以y=C1cosx+C2sinx+e2x(其中C1,C2为任意常数)为通解的二阶线性常系数非齐次微分方程是_________.
设随机变量(U,V)在以点(一2,0),(2,0),(0,1),(0,一1)为顶点的四边形上服从均匀分布,随机变量(1)求X和Y的联合分布律;(2)求X和Y的相关系数;(3)求U和V的边缘密度.
在数中求出最大值.
设求f(x)的极值.
求(x,y,z)=2x+2v—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
随机试题
腱鞘炎较少出现的症状是
茶叶中水溶性灰分碱度的测定中,全部试剂均需要为化学纯。
诊断胃癌的最有效方法是
女性,27岁,妊娠19周。阵发性下腹痛2天,阴道少量流血8小时。为决定是否能继续妊娠,应选用的辅助检查方法为
下列选项中,关于个人贷款特征说法正确的是()。
开具发票应按照规定的时限、顺序,逐栏、全部联次一次性如实开具,并加盖单位财务印章或发票专用章,特殊情况也可分联次分别开具。()
狄德罗认为研究自然科学的三种主要方法不包括()。
(2011年试题,23)设A为三阶实矩阵,A的秩为2,且求矩阵A.
Java源代码文件中,可以有________个import语句。
A、Peoplehavetowearfacemaskevenindoors.B、Chemicalfactoriesarethemajorsourceofpollution.C、Theairispollutedmuch
最新回复
(
0
)