首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题正确的是( ).
下列命题正确的是( ).
admin
2018-11-22
54
问题
下列命题正确的是( ).
选项
A、若向量α
1
,α
2
,…,α
n
线性无关,A为n阶非零矩阵,则Aα
1
,Aα
2
,…,Aα
n
线性无关
B、若向量α
1
,α
2
,…,α
n
线性相关,则α
1
,α
2
,…,α
n
中任一向量都可由其余向量线性表示
C、若向量α
1
,α
2
,…,α
n
线性无关,则α
1
+α
2
,α
2
+α
3
,…,α
n
+α
1
一定线性无关
D、设α
1
,α
2
,…,α
n
是n个n维向量且线性无关,A为n阶非零矩阵,且Aα
1
,Aα
2
,…,Aα
n
线性无关,则A一定可逆
答案
D
解析
(Aα
1
,Aα
2
,…,Aa
n
)=A(α
1
,α
2
,…,α
n
),因为α
1
,α
2
,…,α
n
线性无关,所以矩阵(α
1
,α
2
,…,α
n
)可逆,于是r(Aα
1
,Aα
2
,…,Aα
n
)=r(A),而Aα
1
,Aα
2
,…,Aα
n
线性无关,所以r(A)=n,即A一定可逆,选(D).
转载请注明原文地址:https://kaotiyun.com/show/3EM4777K
0
考研数学一
相关试题推荐
设A=(aij)n×n的秩为n,求齐次线性方程组Bx=0的一个基础解系,其中B=(aij)r×n,r<n。
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T,求方程组的通解。
f(x)在区间[0,1]上具有2阶导数,f(1)>0,<0,证明:方程f(x)+f"(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根.
若曲线积分∫在区域D={(x,y)|x2+y2<1}内与路径无关,则a=_______.
设X1,X2,…,Xn是来自总体X的简单随机样本,且总体X的密度函数为(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的极大似然估计量.
求二重积分|x2+y2一x|dxdy,其中D:{(x,y)|0≤y≤1—x,0≤x≤1}.
设f(x)满足:=0,x2f"2(x)一x2f’2(x)=1一e—2x且f(x)二阶连续可导,则().
设A=为BX=0的解向量,且AX=α3有解.(Ⅰ)求常数a,b。(Ⅱ)求BX=0的通解.
计算其中∑为区域Ω的外侧,Ω由不等式和x2+y2+z2≤4所确定,f(u)有连续一阶导数.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.(1)求导弹运行的轨迹满足的微分方程及初始条件;(2)导弹运行方程.
随机试题
下列哪种疾病可不用超短波疗法
A.干咳,咳声短促B.上气咳逆阵作,咳时面赤C.喉痒干咳,连声作呛D.咽痒咳嗽声重,气急E.咳嗽气息粗促,或喉中有痰声痰热郁肺型咳嗽的主症之一是
A.Na+B.K+C.HCO3-D.Ca2+E.Cl-参与兴奋-收缩耦联的是
A.Ⅰ型变态反应B.Ⅱ型变态反应C.Ⅲ型变态反应D.Ⅳ型变态反应E.Ⅴ型变态反应Arthus反应
效力未定的民事法律行为[南航2016年研;中山大学2014年研]
公司分立是指公司依照法定的程序将公司分成两个或者两个以上的独立公司的行为。根据以上定义,下列属于公司分立的是()。
TourisminChileThebiggestproblemfacingChile,asitpromotesitselfasatouristdestinationtobereckonedwith,isth
Inthepopularmind,theInternetistherealizationoftheglobalvillage,wheretheflowofinformationandideasisunimpeded
Somecollegestudentsareattractedbythosewhoaresimilarwiththem,whileothersarefunofthosewhoaredifferentfromthe
A、Sheeatslittlebutremainsoverweight.B、Sheisbotheredbyhertasteforfastfood.C、Shedoesnotknowwhetherornotthed
最新回复
(
0
)