首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程组AX=B有解但不唯一. 求可逆矩阵P,使得P-1AP为对角阵;
设方程组AX=B有解但不唯一. 求可逆矩阵P,使得P-1AP为对角阵;
admin
2018-05-25
63
问题
设
方程组AX=B有解但不唯一.
求可逆矩阵P,使得P
-1
AP为对角阵;
选项
答案
由|λE-A|=λ(λ+3)(λ-3)=0得λ
1
=0,λ
2
=3,λ
3
=-3. 由(0E-A)X=0得λ
1
=0对应的线性无关的特征向量为 [*] 由(3E-A)X=0得λ
2
=3对应的线性无关的特征向量为 [*] 由(-3E-A)X=0得λ
3
=-3对应的线性无关的特征向量为 [*] 令 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/3EW4777K
0
考研数学三
相关试题推荐
[*]+C,其中C为任意常数
已知α1=[1,2,-3,1]T,α2=[5,-5,a,11]T,α3=[1,-3,6,3]T,α4=[2,-1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4线性相关;(2)a为何值时,向量组α1,α2,α3,α4线性无关;(3)a
求齐次线性方程组基础解系.
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅱ)等价.
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
已知非齐次线性方程组A3×4=b①有通解k1[1,2,0,-2]T+k2[4,-1,-1,-1]T+[1,0,-1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是_________.
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
随机试题
A.从容,和缓,流利B.柔和有力,节律一致C.脉率不快,强弱适中D.尺脉有力,沉取不绝脉“有神”主要指
Forthispart,youaresupposedtowriteacompositionofabout100-120wordsbasedonthefollowingsituation.Remembertowr
A.离子单体B.离子二聚体C.非离子单体D.非离子二聚体E.阴性造影剂碘克酸属于
患者内热烦躁,继而汗出热解,烦躁亦减,病机是
下列哪一项在溶血性黄疸时不存在?()
实行招标的工程,发承包人约定合同工期、造价、质量、履行期限等主要条款应当与招标文件和中标人的投标文件的内容一致,若出现不一致的情况,应()。
关于股票期权的个人所得税处理,下列表述正确的有()。(2009年)
同一债权既有保证又有物的担保的,保证人()。
“十二五”规划的主题是___________。
______hotweathermaycauseserioushealthproblemsassociatedwithairpollution?______hotweatherWillhaveitseffectsonc
最新回复
(
0
)