首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)为连续函数,解方程f(χ)=2(eχ-1)+∫0χ(χ-t)f(y)dt.
设f(χ)为连续函数,解方程f(χ)=2(eχ-1)+∫0χ(χ-t)f(y)dt.
admin
2018-06-12
60
问题
设f(χ)为连续函数,解方程f(χ)=2(e
χ
-1)+∫
0
χ
(χ-t)f(y)dt.
选项
答案
先将原方程改写成 f(χ)=2(e
χ
-1)+χ∫
0
χ
f(t)dt-∫
0
χ
tf(t)dt 然后两边求导得f′(χ)=2e
χ
+∫
0
χ
f(t)dt. (*) 在原方程中令χ=0得f(0)=0;又在上式中令χ=0得f′(0)=2. 再将(*)式求导得f〞(χ)=2e
χ
+f(χ). 于是,问题转化为求解二阶线性常系数方程的初值问题,即 [*] 其中,y=f(χ).特征方程为λ
2
-1=0,特征根λ=±1,非齐次项ae
αχ
,α=2,α=1为单特征根,故有特解y
*
=Aχe
χ
,代入方程得A(χ+2)e
χ
-Aχe
χ
-2e
χ
.比较上式两端系数得A=1,于是y
*
=χe
χ
.因此,通解为 y=C
1
e
χ
+C
2
e
-χ
+χe
χ
. 由初值y(0)=0,y′(0)=2得C
1
=[*],C
2
=-[*].最后求得 y=f(χ)=[*]+χe
χ
.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Fg4777K
0
考研数学一
相关试题推荐
求下列齐次线性方程组的基础解系:(3)nχ1+(n-1)χ2+…+2χn-1+χn=0
已知平面上三条不同直线的方程分别为l1=aχ+2by+3c=0,l2=bχ+2cy+3a=0,l3=cχ+2ay+3b=0,试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的通解,并说明理由.
非齐次方程组的通解是_______.
设f(χ,y)为区域D内的函数,则下列结论中不正确的是
某考生想借张宇编著的《张宇高等数学18讲》,决定到三个图书馆去借,对每一个图书馆而言,有无这本书的概率相等;若有,能否借到的概率也相等,假设这三个图书馆采购、出借图书相互独立,求该生能借到此书的概率.
有两名选手比赛射击,轮流对同一个目标进行射击,甲命中目标的概率为α,乙命中目标的概率为β甲先射,谁先命中谁得胜.问甲、乙两人获胜的概率各为多少?
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路
一链条悬挂在一钉子上,启动时一端离开钉子8m,另一端离开钉子12m,试分别在以下两种情况下求链条滑离钉子所需要的时间:不计钉子对链条的摩擦力;
随机试题
简述财务类人员的职业生涯规划。
做B-D试验的注意事项有
某新生儿,诊断为单侧完全性唇裂合并单侧完全性腭裂,同时伴有鼻部畸形。腭裂的正畸治疗应开始于
实物资产清查的技术推算法适应范围广,绝大部分实物资产都可以采用这种方法进行清查。()
关于培训与开发组织体系的陈述,错误的是()。
2013年4月,吴某设立一家有限责任公司,从事绿色食品开发,注册资本为200万元。公司成立半年后,为增加产品开发力度,吴某拟新增资本100万元,并为此分别与贾某、刘某洽谈,该二人均有意愿认缴全部新增资本,加入吴某的公司。吴某遂先后与贾某、刘某二人就投资事项
侦查:调查:证据
马克思主义中国化就是把马克思主义基本原理同中国革命、建设和改革的实践结合起来,同中国的优秀历史传统和优秀文化结合起来,既坚持马克思主义,又发展马克思主义。马克思主义中国化的科学内涵包括
下列有关数据库的描述,正确的是()。
AccordingtoPrimeMinisterWenJiabao,whatwillChinado?
最新回复
(
0
)