首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)为连续函数,解方程f(χ)=2(eχ-1)+∫0χ(χ-t)f(y)dt.
设f(χ)为连续函数,解方程f(χ)=2(eχ-1)+∫0χ(χ-t)f(y)dt.
admin
2018-06-12
44
问题
设f(χ)为连续函数,解方程f(χ)=2(e
χ
-1)+∫
0
χ
(χ-t)f(y)dt.
选项
答案
先将原方程改写成 f(χ)=2(e
χ
-1)+χ∫
0
χ
f(t)dt-∫
0
χ
tf(t)dt 然后两边求导得f′(χ)=2e
χ
+∫
0
χ
f(t)dt. (*) 在原方程中令χ=0得f(0)=0;又在上式中令χ=0得f′(0)=2. 再将(*)式求导得f〞(χ)=2e
χ
+f(χ). 于是,问题转化为求解二阶线性常系数方程的初值问题,即 [*] 其中,y=f(χ).特征方程为λ
2
-1=0,特征根λ=±1,非齐次项ae
αχ
,α=2,α=1为单特征根,故有特解y
*
=Aχe
χ
,代入方程得A(χ+2)e
χ
-Aχe
χ
-2e
χ
.比较上式两端系数得A=1,于是y
*
=χe
χ
.因此,通解为 y=C
1
e
χ
+C
2
e
-χ
+χe
χ
. 由初值y(0)=0,y′(0)=2得C
1
=[*],C
2
=-[*].最后求得 y=f(χ)=[*]+χe
χ
.
解析
转载请注明原文地址:https://kaotiyun.com/show/3Fg4777K
0
考研数学一
相关试题推荐
设f(x)具有一阶连续导数,f(0)=0,且微分方程[xy(1+y)一f(x)y]dx+[f(x)+x2y]dy=0为全微分方程.(Ⅰ)求f(x);(Ⅱ)求该全微分方程的通解.
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cχ=0的基础解系,B是m阶可逆矩阵,证明:BA的行向量也是齐次方程组Cχ=0的基础解系.
设n元齐次线性方程组Aχ=0的系数矩阵A的秩为r,则Aχ=0有非零解的充分必要条件是()
证明r(A)=1的充分必要条件是存在非零列向量a及非零行向量bT,使A=abT.
若f(-1,0)为函数f(χ,y)=e-χ(aχ+b-y2)的极大值,则常数a,b应满足的条件是
甲、乙、丙三人向一架飞机进行射击,他们的命中率分别为0.4,0.5,0.7.设飞机中一弹而被击落的概率为0.2,中两弹而被击落的概率为0.6,中三弹必然被击落,今三人各射击一次,求飞机被击落的概率.
设n阶(n≥3)矩阵A的主对角元均为1,其余元素均为a,且方程组AX=0只有一个非零解组成基础解系,则a=_________
从一批轴料中取15件测量其椭圆度,计算得S=0.025,问该批轴料椭圆度的总体方差与规定的σ2=0.0004有无显著差别?(a=0.05,椭圆度服从正态分布)
随机试题
甲教唆12岁的乙盗窃,甲是()
彩色血流图是指
颈肿眼突,可诊断为
微量清蛋白尿是指尿中清蛋白排出量为
护士在书写日间病室交班报告时,首先应写的内容是
县农行有无变卖抵押物的权利?设刘某在将汽车抵押给县农行后,于2003年9月将汽车出租给王某,后法院在审理此案中将汽车拍卖给李某,那么王某与李某存有何种法律关系?王某所受损失由谁承担?
甲公司为国有独资公司,其董事会作出的下列决议中,符合《公司法》规定的是()。
为丰(1)校刊《新时代》的内容,特征求下列稿件:园(2)颂歌,先进事迹,读书笔记,奇思异想等。来稿要求观点鲜明、文字(3)洁生动、字(4)清晰,篇幅以不超过千字为宜。请写明(5)实姓名和所在班级。稿件请送本校学生会《新时代》编(6)部
Theevolutionofsexratioshasproduced,inmostplantsandanimalswithseparatesexes,approximatelyequalnumbersofmalesa
Awisemanoncesaidthattheonlythingnecessaryforthetriumphofevilisforgoodmentodonothing.So,asapoliceoffice
最新回复
(
0
)