首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明: (M1,—M2,…,(—1)n—1Mn)是方程组的一个解向量。
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明: (M1,—M2,…,(—1)n—1Mn)是方程组的一个解向量。
admin
2019-03-23
97
问题
设齐次线性方程组
的系数矩阵为A=
,设M
i
(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明:
(M
1
,—M
2
,…,(—1)
n—1
M
n
)是方程组的一个解向量。
选项
答案
作n阶行列式 D
i
=[*],i=1,2,…,n—1。 因为D
i
的第一行与第i+1行是相同的,所以D
i
=0。 D
i
的第一行元素的代数余子式依次为M
1
,—M
2
,…,(—1)
n—1
M
n
,将D
i
按第一行展开,得 a
i1
M
1
+a
i2
(—M
2
)+ … +a
in
[(—1)
n—1
M
n
]=0,(i=1,2,…,n—1), 这说明(M
1
,—M
2
,…,(—1)
n—1
M
n
)满足第i(i=1,2,…,n—1)个方程,故它是方程组的一个解。
解析
转载请注明原文地址:https://kaotiyun.com/show/3XV4777K
0
考研数学二
相关试题推荐
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
设A是3阶不可逆矩阵,α1,α2是AX=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
A=,r(A)=2,则()是A*X=0的基础解系.
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
设A是m阶正定矩阵,B是m×n实矩阵,证明:BTAB正定r(B)=n.
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在η∈(0,2),使f(n)=f(0);
设f(x,y)在点O(0,0)的某邻域U内连续,且.试讨论f(0,0)是否为f(x,y)的极值?是极大值还是极小值?
随机试题
合伙人对合伙债务承担无限连带责任。()
胫神经尺神经
急性有机磷中毒洗胃时应采取的体位是()。
重力式挡土墙位于岩质地基时,其基底逆坡坡度不宜大于()。
焊接材料与母材应匹配,全焊透的一、二级焊缝应采用()进行内部缺陷检验。
由于中国的企业会计准则和会计制度与国际会计准则存在差别,为了便于境外投资者了解企业的财务状况及其发展前景,充分保障投资者的利益,以及适应不同募集地的要求,需要国际会计师事务所参照国际会计准则,对企业的会计报表进行调整,并公开披露。( )
银行金融创新的基本原则不包括()。
“能清楚地说出自己想说的事”,这属于()的目标。
在软件开发过程中,软件结构设计是描述
Ireadalotofbooksto(sharp)______mymind.
最新回复
(
0
)