设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Z=X+Y的方差.

admin2019-05-08  44

问题 设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Z=X+Y的方差.

选项

答案解一 令G={(x,y)|0≤x≤1,0≤y≤1,x+y≥1}(见图3.4.2.1).由题设知(X,Y)在G上服从均匀分布.由定义3.3.4.1及SG=1/2,得到其概率密度f(x,y)为 [*] 注意到G及D关于y=x对称,有 [*] 利用这些性质及命题3.4.2.1,得到 [*] 故D(Z)=D(X+Y)=E[(X+Y)2]-[E(x+y)]2=11/6-16/9=1/18. 解二 下用求不相互独立的两个随机变量X与Y之和Z=X+Y的卷积公式(3.3.3.1)式 [*] 求出其概率密度f(z).为此改写f(x,y).由 [*] 在xOz平面上f取正值的区域为0≤x≤1,O≤z-x≤1,z≥1所围成的区域G1={(x,y)|0≤x≤1,0≤z-x≤1,z≥1}(见图3.4.2.2).因而 [*] 故 [*] 于是 [*] D(X+Y)=D(Z)=E(Z2)-[E(Z)]2=E(X+Y)2-[E(X+Y)]2=11/6-(4/3)2=1/18. 注:定义3.3.4.1 设G是有界平面区域,其面积为SG,若二维随机变量(X,Y)的概率密度函数为 [*] 则称(X,Y)在G上服从二维均匀分布. 命题3.4.2.1 [*] 其中f(x,y)为(X,Y)的联合概率密度.

解析
转载请注明原文地址:https://kaotiyun.com/show/toJ4777K
0

最新回复(0)