首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Z=X+Y的方差.
设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Z=X+Y的方差.
admin
2019-05-08
70
问题
设随机变量X和Y的联合分布在以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Z=X+Y的方差.
选项
答案
解一 令G={(x,y)|0≤x≤1,0≤y≤1,x+y≥1}(见图3.4.2.1).由题设知(X,Y)在G上服从均匀分布.由定义3.3.4.1及S
G
=1/2,得到其概率密度f(x,y)为 [*] 注意到G及D关于y=x对称,有 [*] 利用这些性质及命题3.4.2.1,得到 [*] 故D(Z)=D(X+Y)=E[(X+Y)
2
]-[E(x+y)]
2
=11/6-16/9=1/18. 解二 下用求不相互独立的两个随机变量X与Y之和Z=X+Y的卷积公式(3.3.3.1)式 [*] 求出其概率密度f(z).为此改写f(x,y).由 [*] 在xOz平面上f取正值的区域为0≤x≤1,O≤z-x≤1,z≥1所围成的区域G
1
={(x,y)|0≤x≤1,0≤z-x≤1,z≥1}(见图3.4.2.2).因而 [*] 故 [*] 于是 [*] D(X+Y)=D(Z)=E(Z
2
)-[E(Z)]
2
=E(X+Y)
2
-[E(X+Y)]
2
=11/6-(4/3)
2
=1/18. 注:定义3.3.4.1 设G是有界平面区域,其面积为S
G
,若二维随机变量(X,Y)的概率密度函数为 [*] 则称(X,Y)在G上服从二维均匀分布. 命题3.4.2.1 [*] 其中f(x,y)为(X,Y)的联合概率密度.
解析
转载请注明原文地址:https://kaotiyun.com/show/toJ4777K
0
考研数学三
相关试题推荐
设z=f(etsinnt,tant),求.
设随机变量X的概率密度为求随机变量Y=eX的概率密度fY(y)。
设相互独立的两随机变量X与Y均服从分布B(1,),则P{X≤2Y}=()
已知随机变量Y服从[0,5]上的均匀分布,则关于x的一元二次方程4x2+4Yx+Y+2=0有实根的概率P=________。
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,…,km,皆有k1α1+k2α2+…+kmαm≠0,则().
设f(x)二阶连续可导且f(0)=f’(0)=0,f’’(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)=arctan2x,则f(2017)(0)=()
求微分方程xy′+(1一x)y=e2x(x>0)满足的特解.
求下列导数:
随机试题
关于盆腔内脏器与腹膜关系的叙述,哪项是正确的()
肝的体表投影,下列描述哪项不正确()
胸腔积液较多,一般每次抽液量不超过多少()
冬天小儿的尿液冷却后呈白色浑浊是由于
A机电工程公司通过竞标总承包了一新建机械厂的通风与空调工程,总工期为6个月。主辅材料均由A机电公司供应。其中,分部分项工程量清单计价合计为536万元;措施项目清单计价合计60万元;其他项目清单计价合计15万元。取费费率为:规费费率4.85%;税率3.56%
会计科目的设置原则包括()。
依次填入下列各句横线处的成语,恰当的一组是()。①他的演唱真是________,赢得了全场观众的热烈喝彩。②只要问题得到解决,其他问题就________了。③形式多样的文艺节目不断出现,有如________。
下列各句中没有语病且句意明确的一句是:
Whyarethelivesofplantsnotwell-knowntomostpeople?
A、Theylivedincaves.B、Theydidn’thavetheirlanguage.C、Theycouldonlybuildhouseswithanimalhonesandskins.D、Theywer
最新回复
(
0
)