首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=2E+ATA.试证:当λ>0时,矩阵B为正定矩阵.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=2E+ATA.试证:当λ>0时,矩阵B为正定矩阵.
admin
2019-05-08
31
问题
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=2E+A
T
A.试证:当λ>0时,矩阵B为正定矩阵.
选项
答案
证一 下面证B为实对称矩阵,且对任意X≠0,有X
T
BX>0. 因B
T
=(λE+A
T
A)
T
=(λE)
T
+(A
T
A)
T
=λE+A
T
A=B,故B为n阶实对称矩阵.又对任意的n维向量X,有 X
T
BX=X
T
(λE+A
T
A)X=λX
T
X+X
T
A
T
AX=λX
T
X+(AX)
T
(AX). 当X≠0时,有X
T
X>0,(AX)
T
AX≥0,因此当λ>0时,对任意X≠0,有 X
T
BX=λX
T
X+(AX)
T
(AX)>0, 则B为正定矩阵. 证二 为证B正定,下证B的特征值全大于零.设μ为B的任意一特征值,X为对应的特征向量,则BX=μX,即 (λE+A
T
A)X=μX,亦即 λX+A
T
AX=μX (X≠0). 两边左乘X
T
,得到 λX
T
X+λX
T
A
T
AX=λX
T
X+λ(AX)
T
(AX)=μX
T
X. 因X≠0,故X
T
X>0.又λ>0(题设),故λX
T
X>0,而(AX)
T
AX≥0,从而λ(AX)
T
(AX)≥0,故 λX
T
X+λ(AX)
T
(AX)>0, 即 μX
T
X>0. 而X
T
X>0,故μ>0,即B的特征值全大于零,故B正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/fsJ4777K
0
考研数学三
相关试题推荐
求函数f(x)=∫0x2(2-t)e-tdt的最大值与最小值.
曲线y=(x-1)(x-2)和x轴围成平面图形,求此平面图形绕y轴一周所成的旋转体的体积.
求幂级数的收敛域.
当0<x<时,证明:<sinx<x.
设级数都发散,则().
求幂级数.
高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足z=h(t)-,已知体积减少的速度与侧面积所成比例系数为0.9,问高度为130的雪堆全部融化需要多少时间(其中长度单位是cm,时间单位为h)?
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为k=,求y=y(x).
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
随机试题
试述我国涉外经济法律关系的主体。
A.干烤消毒法B.压力蒸汽灭菌法C.紫外线消毒法D.煮沸法E.过滤除菌法空气可用的消毒方法是
普通X线胶片采用的卤化银主要是
一般施工合同均分为()等部分。
证券投资基金管理费通常从基金的股息、利息收益中或从基金资产中扣除,不另向投资者收取。( )
2009年1—3月,全国完成房地产开发投资4880亿元,同比增长4.1%。其中,商品住宅完成投资3422亿元,同比增长3.2%,比1—2月提高2.4个百分点,比去年同期回落31.5个百分点。1—3月,全国房地产开发企业房屋施工面积17.87亿
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
“许多部门或团体分工协作一项工作”描述的是组织特征中的()
Thecorporateworldisincreasinglyrejectingimperialchiefexecutivesinfavourofanonymousmanagers—prudentandboringmena
A、TheUSshouldcatchuptoEuropeanenvironmentalstandards.B、AmericanexportersmustadapttonewregulationsinEurope.C、Th
最新回复
(
0
)