首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3,经正交变换x=Py化成f=yx22+2y3x3,P是3阶正交矩阵.试求常数a、β.
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3,经正交变换x=Py化成f=yx22+2y3x3,P是3阶正交矩阵.试求常数a、β.
admin
2021-12-09
62
问题
设二次型f=x
1
2
+x
2
2
+x
3
2
+2ax
1
x
2
+2βx
2
x
3
+2x
1
x
3
,经正交变换x=Py化成f=yx
2
2
+2y
3
x
3
,P是3阶正交矩阵.试求常数a、β.
选项
答案
变换前后二次型的矩阵分别为[*] 二次型可以写成f=x
T
Ax和f=y
T
By,由于P
T
AP=B,P为正交矩阵,故P
-1
AP=B,因此[*] λ
3
-3λ
2
+(2-a
2
-β
2
)λ+(a-β)
2
=λ
3
-3λ
2
+2λ,比较系数得a=β=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/3sR4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,经若干次矩阵的初等变换得到矩阵B,那么().
设A,B均为n阶对称矩阵,则下列结论不正确的是()
设则
设f(x,y)连续,且f(x,y)=xy+f(u,υ)dudυ,其中D是由y=0,y=x2,x=1所围区域,则f(x,y)等于()
设函数f(x)对任意的x均满足等式f(1+x)=af(x),且有f’(0)=b,其中a,b为非零常数,则()
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为()
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中①A2;②P-1AP;③AT;④E一A。α肯定是其特征向量的矩阵个数为()
设随机变量X与Y相互独立,其分布函数分别为FX(x)与FY(y),则Z=max{X,Y}的分布函数FZ(z)是()
假设X为随机变量,则对任意实数a,概率P{X=a}=0的充分必要条件是()
设函数u(x,y)=φ(x+y)+φ(x—y)+∫x—yx+yψ(t)dt,其中函数φ具有二阶导数,ψ具有一阶导数,则必有()
随机试题
代谢性酸中毒最突出的症状是【】
131I摄取率主要用于
既是糖分解代谢的产物又是糖异生原料的物质是
A.永久性尿崩症B.暂时性尿崩症C.三相性尿崩症D.肾性尿崩症E.特发性尿崩症
下颌支外侧隆突下颌隆突
猫眼疮患者,皮损鲜红,中心水疱明显,发热,尿黄,舌红,苔黄,脉弦。辨证为( )。猫眼疮患者,皮损暗红,遇寒加重,下肢沉重,关节痛,小便清长,舌淡,苔白脉沉。辨证为( )。
债权人可以持商业承兑汇票向银行贴现以获取现金。()
激光切割是一种无接触的切割方法,其切割的主要特点有()。
简述备课的基本要求。
Ifthereisonethingthatcouldhalttheascentofsocialnetworks,itisthethornyquestionofprivacy.Thisis【C1】______beca
最新回复
(
0
)