首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5一α4的秩为4.
已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5一α4的秩为4.
admin
2019-07-16
111
问题
已知向量组(Ⅰ):α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ):α
1
,α
2
,α
3
,α
5
.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α
1
,α
2
,α
3
,α
5
一α
4
的秩为4.
选项
答案
证1 因R(Ⅰ)=R(Ⅱ)=3,所以α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,故存在数λ
1
,λ
2
,λ
3
,使得 α
4
=λ
1
α
1
+λ
1
α
2
+λ
1
α
3
(*) 设有数k
1
,k
2
,k
3
,k
4
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
(α
5
一α
4
)=0将(*)式代入上式并化简,得 (k
1
一λ
1
k
4
)α
1
+(k
2
一λ
2
k
4
)α
2
+(k
3
一λ
3
k
4
)α
3
+k
4
α
5
=0,由R(Ⅲ)=4知α
1
,α
2
,α
3
,α
5
线性无关,所以 [*]得k
1
=k
2
=k
3
=k
4
=0,故α
1
,α
2
,α
3
,α
5
一α
4
线性无关,即其秩为4. △证2 同证1可知存在数λ
1
,λ
2
,λ
3
,使得 α
4
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
所以有 α
5
一α
4
=一λ
1
α
1
一λ
2
α
2
一λ
3
α
3
+α
5
即α
5
一α
4
可由向量组(Ⅲ)线性表示,于是知(Ⅳ)可由(Ⅲ)线性表示.又 α
5
一α
4
+(α
5
一α
4
)=λ
1
α
5
+λ
1
α
5
+λ
3
α
5
+(α
5
一α
4
)即α
5
可由向量组。(Ⅳ)线性表示,于是知(Ⅲ)可由(Ⅳ)线性表示.因此,向量组(Ⅲ)。与向量组(Ⅳ)等价,=>R(Ⅳ)=R(Ⅲ)=4.
解析
本题主要考查向量组线性相关性的概念及线性相关性与向量组的秩的关系.注意证1是利用定义证明向量组(Ⅳ)线性无关,其中利用了“若α
1
,…,α
r
线性先关,而α
1
,…α
r
,β线性相关,则β可由α
1
,…,α
r
线性表示”的结论.证2则利用了“等价的向量组必具有相同的秩”这一结论.
转载请注明原文地址:https://kaotiyun.com/show/XNJ4777K
0
考研数学三
相关试题推荐
设函数f(x)=在x=1处连续,则A=_______.
已知四元齐次方程组(I)的解都满足方程式(Ⅱ)x1+x2+x3=0.①求a的值.②求方程组(I)的通解.
①设α1,α2,…,αs和β1,β2,…,αt都是n维列向量组,记矩阵A=(α1,α2,…,αs),B=(β1,β2,…,βt)证明:存在矩阵C,使得AC=B的充分必要条件是r(α1,α2,…,αs;β1,β2,…,βt)=r(α,α2,…,α
将抛物线y=x2一x与x轴及直线x=c(c>1)所围成平面图形绕x轴旋转一周,所得旋转体的体积Vx等于弦op(p为抛物线与直线x=c的交点)绕x轴旋转所得锥体的体积V锥,则c的值为______.
设P为可逆矩阵,A=PTP.证明:A是正定矩阵.
证明:r(AB)≤min{r(A),r(B)}.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为求y=y(x).
设随机变量X的概率密度为求Y=eX的概率密度fY(y).
求极限
随机试题
反常性碱性尿
在X线摄影中,使用对比剂可以增加组织间的对比,有助于形成影像。肝肾功能严重受损不能进行静脉尿路造影检查的原因不包括
氨基酸脱氨基可生成相应的α-酮酸,后者在体内参与合成
下列有关金融中介与金融市场功能的关系的表述,传统理论认为()。
我国最早修筑长城的是(),大约始于公元前7世纪中叶。
人体的免疫功能,可清除自身的损伤细胞,在这一生理过程中,损伤细胞属于()。
君子博学而日参省乎己,_______。(《荀子.劝学》)
公安部不需要接受中央政法委员会的领导,但是各级地方公安机关要接受各级党委的政法委员会的领导。()
交管局要求司机在通过某特定路段时,在白天也要像晚上一样使用大灯,结果发现这条路上的年事故发生率比从前降低了15%。他们得出结论说:如果在全市范围内都推行该项规定会同样地降低事故发生率。以下哪项如果为真,最能支持上述论证的结论?
Tobefrank,IshouldsayTom______(与其说是个摄影师,不如说是个画家).
最新回复
(
0
)