首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5一α4的秩为4.
已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5一α4的秩为4.
admin
2019-07-16
84
问题
已知向量组(Ⅰ):α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ):α
1
,α
2
,α
3
,α
5
.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α
1
,α
2
,α
3
,α
5
一α
4
的秩为4.
选项
答案
证1 因R(Ⅰ)=R(Ⅱ)=3,所以α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,故存在数λ
1
,λ
2
,λ
3
,使得 α
4
=λ
1
α
1
+λ
1
α
2
+λ
1
α
3
(*) 设有数k
1
,k
2
,k
3
,k
4
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
(α
5
一α
4
)=0将(*)式代入上式并化简,得 (k
1
一λ
1
k
4
)α
1
+(k
2
一λ
2
k
4
)α
2
+(k
3
一λ
3
k
4
)α
3
+k
4
α
5
=0,由R(Ⅲ)=4知α
1
,α
2
,α
3
,α
5
线性无关,所以 [*]得k
1
=k
2
=k
3
=k
4
=0,故α
1
,α
2
,α
3
,α
5
一α
4
线性无关,即其秩为4. △证2 同证1可知存在数λ
1
,λ
2
,λ
3
,使得 α
4
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
所以有 α
5
一α
4
=一λ
1
α
1
一λ
2
α
2
一λ
3
α
3
+α
5
即α
5
一α
4
可由向量组(Ⅲ)线性表示,于是知(Ⅳ)可由(Ⅲ)线性表示.又 α
5
一α
4
+(α
5
一α
4
)=λ
1
α
5
+λ
1
α
5
+λ
3
α
5
+(α
5
一α
4
)即α
5
可由向量组。(Ⅳ)线性表示,于是知(Ⅲ)可由(Ⅳ)线性表示.因此,向量组(Ⅲ)。与向量组(Ⅳ)等价,=>R(Ⅳ)=R(Ⅲ)=4.
解析
本题主要考查向量组线性相关性的概念及线性相关性与向量组的秩的关系.注意证1是利用定义证明向量组(Ⅳ)线性无关,其中利用了“若α
1
,…,α
r
线性先关,而α
1
,…α
r
,β线性相关,则β可由α
1
,…,α
r
线性表示”的结论.证2则利用了“等价的向量组必具有相同的秩”这一结论.
转载请注明原文地址:https://kaotiyun.com/show/XNJ4777K
0
考研数学三
相关试题推荐
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解.
过原点作曲线的切线L,该切线与曲线及y轴围成平面图形D.(I)求切线L的方程.(Ⅱ)求D绕y轴旋转一周所得旋转体体积V.
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设矩阵为A*对应的特征向量.判断A可否对角化.
设A为n阶矩阵,证明:其中n≥2.
设总体X~N(0,σ2),X1,X2,…,Xn为来自总体X的简单随机样本,所服从的分布.
电话公司有300台分机,每台分机有6%的时间处于与外线通话状态,设每台分机是否处于通话状态相互独立,用中心极限定理估计至少安装多少条外线才能保证每台分机使用外线不必等候的概率不低于0.95?
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)-f(1)].若求:f(x)的极值.
求下列极限:
随机试题
在数据库操作中,“GOTOTOP”命令是使记录指针()。
(2011年10月)领导艺术的特征。
促进胰腺释放胰岛素的药物是
男性患者,48岁,教授。因反复心前区疼痛1年,加重伴呼吸困难2小时入院。入院前1年常感心前区压迫性疼痛,多于劳累、饭后发作,每次持续3~5分钟,休息后减轻。入院前半月,疼痛渐频繁,休息时也发作。入院前2小时突感心前区压榨样疼痛,并向左肩部、臂部放射,伴大汗
关于肝转移癌的CT表现,错误的是
关于贷款意向书和贷款承诺,以下表述不正确的是()。[2016年6月真题]
唐太宗时期,政治清明,经济繁荣,国力强盛,史称()。
A、 B、 C、 D、 A
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A.
一个工作人员可以使用多台计算机,而一台计算机可被多个人使用,则实体工作人员与实体计算机之间的联系是( )。
最新回复
(
0
)