首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3维向量组α1,α2线性无关,β1,β2线性无关. 证明存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;
设3维向量组α1,α2线性无关,β1,β2线性无关. 证明存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;
admin
2018-07-23
55
问题
设3维向量组α
1
,α
2
线性无关,β
1
,β
2
线性无关.
证明存在非零3维向量ξ,ξ既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出;
选项
答案
因α
1
,α
2
,β
1
,β
2
均是3维向量,4个3维向量必线性相关.由定义知,存在不全为零的数k
1
,k
2
,λ
1
,λ
2
,使得 k
1
α
1
+ k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0. 得 k
1
α
1
+ k
2
α
2
=-λ
1
β
1
-λ
2
β
2
. 取 ξ= k
1
α
1
+ k
2
α
2
=-λ
1
β
1
-λ
2
β
2
, 若ξ=0,则k
1
α
1
+ k
2
α
2
=-λ
1
β
1
-λ
2
β
2
=0. 因α
1
,α
2
线性无关,β
1
,β
2
也线性无关,从而得出k
1
=k
2
,且λ
1
=λ
2
,这和4个3维向量必线性相关矛盾,故ξ≠0.ξ即为所求的既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出的非零向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/3sj4777K
0
考研数学二
相关试题推荐
设函数f(x)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量y的线性主部为0.1,则f’(1)=_______.
设B是2阶矩阵,且满足AB=B,k1,k2是任意常数,则B=
证明下列命题:设f(x,y)定义在全平面上,且则f(x,y)恒为常数;
一物体的运动方程为s=t2+10,求该物体在t=3时的瞬时速度.
设f(x)=xsinx+cosx,下列命题中正确的是().
求二元函数z=f(x,y)=x2y(4-x-y)在由直线x+y=6、x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
微分方程(2x+3)y"=4y’的通解为_______.
设3元的实二次型f=xTAx的秩为1,且A的各行元素之和为3.求一个正交变换x=Py将二次型f=xTAx化成标准;
如图3—3,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的下、上半圆周.设F(x)=∫0xf(t)dt,则下列结论正确的是()
随机试题
我国《建筑法》、《招标投标法》以及《合同法》等对违法分包的行为,都有明确具体的禁止性规定。其中,违法分包签订的建设工程施工合同的效力为()
大剂量长期应用可致胆汁淤积性黄疸的药物:前列腺癌禁用的药物:
各种注射剂中药物的释放速率排序为
对椎间盘的叙述正确的
大肠杆菌DNA复制过程中链延伸的主要酶是
医师的权利不包括()
关于贸易救济措施争议的国内程序救济和多边程序救济,下列哪些说法是正确的?
执法为民是社会主义法治的本质要求。对此,下列哪一选项是不正确的?(2010年试卷一第4题)
根据《合同法》的规定,违反合同承担违约责任的方式有()。
______BaklasePharmaceuticalsshutdowntwofactorieslastmonth,itstillmanagedtomeetitsproductiontargetthisyear.
最新回复
(
0
)