首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=不可对角化,则a=___.
设矩阵A=不可对角化,则a=___.
admin
2020-05-09
67
问题
设矩阵A=
不可对角化,则a=___.
选项
答案
0或4
解析
=λ(λ-a)(λ-4)=0
得λ
1
=0,λ
2
=a,λ
3
=4
因为A不可对角化,所以A的特征值一定有重根,从而a=0或a=4.
当a=0时,由r(0E-A)=r(A)=2,得λ
1
=λ
2
=0只有一个线性无关的特征向量,则A不可对角化,符合题意。
当a=4时,
,
由r(4E-A)=2得λ
2
=λ
3
=4只有一个线性无关的特征向量,故A不可对角化,符合题意。
转载请注明原文地址:https://kaotiyun.com/show/4284777K
0
考研数学二
相关试题推荐
设讨论是否存在,若存在,给出条件,若不存在,说明理由.
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn—r是对应的齐次线性方程组的一个基础解系。证明:η*,η*+ξ1,…,η*+ξn—r,线性无关。
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为()
设A为三阶实对称矩阵,a1=(m,m-1)T是方程组AX=0的解,a2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=___.
[2003年]设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(x>0.若极限存在,证明:在(a,b)内f(x)>0;
设函数y=满足f′(χ)=arctan,则=_______.
求下列曲线的曲率或曲率半径:(Ⅰ)求y=lnχ在点(1,0)处的曲率半径.(Ⅱ)求χ=t-ln(1+t2),y=arctant在t=2处的曲率.
设则(A-1)*=________.
随机试题
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α+6α2—5α3.(Ⅰ)写出与A相似的矩阵B;(Ⅱ)求A的特征值和特征向量;(Ⅲ)求秩r(A+E).
不定期清查主要是在()情况下进行。
关系到企业是否能够按照合约规定交货,进而决定了企业在市场上声誉的是()。
暴雨定点定面关系为()。
下列有关应付债券的相关说法中,正确的有()。
某系统由A、B两个部分组成,两部分工作相互独立,且两部分均失效才能导致系统失效,若A部分的失效概率为0.2,B部分的失效概率为0.1,则系统失效概率为()。
教师在课堂上采用小组讨论的教学方法,重点是培养学生的()。
美国学者罗伯特.卡茨将领导者应具备的技能分为三类,即概念技能、人际技能及()。
A、他为人善良B、喜欢说话人C、他们是老乡D、他们是恋人C语段的第一句就提到了“唐飞是我在这间厂唯一的老乡”,所以对我特别好,选择C。
Readthefollowingpassageandanswerquestions9-18.1.Peoplehavebeenpaintingpicturesforatleast30,000years.Theearli
最新回复
(
0
)