首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2019-05-11
79
问题
设a
1
,a
2
,…,a
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性: a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此(a
1
,a
2
,…,a
n
)=n。对任一n维向量b,因为a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关。 综上所述r(a
1
,a
2
,…,a
n
,b)=n。 又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示。 充分性: 已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组:ξ
1
,ξ
2
,…,ξ
n
可由a
1
,a
2
,…,a
n
线性表示,即 r(ξ
1
,ξ
2
,…,ξ
n
)=n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组凡维向量,有r(a
1
,a
2
,…,a
n
)≤n。 综上,r(a
1
,a
2
,…,a
n
)=n。所以a
1
,a
2
,…,a
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/B8V4777K
0
考研数学二
相关试题推荐
设f(χ)∈C[0,1],f(χ)>0.证明积分不等式:ln∫01f(χ)dχ≥∫01lnf(χ)dχ.
设f′(χ)在[0,1]上连续且|f′(χ)|≤M.证明:
证明:方程χa=lnχ(a<0)在(0,+∞)内有且仅有一个根.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
a,b取何值时,方程组有解?
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
求方程组的通解.
把二重积(χ,y)dχdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线χ+y=1,χ=1,y=1围成.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变化下的标准形为2y12+y22。
随机试题
ThefirstyearwasveryhardforthePilgrims,andonlyfiftyoftheoriginalonehundredpassengers【C1】______.Conditionsbegan
关于高血压危象下列哪项说法不正确
乌头汤中用白蜜,主要目的是
在固定资产大修理费用的处理方式中,资金形成在先、支付在后的方式是()。
通常应对不利的材料数量差异负责的部门是()。
原始凭证发生的错误,正确的更正方法是由出具单位在原始凭证上更正。()
根据下列资料,回答下列题。货物贸易规模迅速扩大。“十一五”期间,我国货物进出口总额累计116806亿美元.比“十五”期间增长1.6倍。其中,出口总额63997亿美元,增长1.7倍;进口总额52809亿美元,增长1.4倍。5年间,进出口贸易年均增长
blacksheep
设,当a,b为何值时,存在矩阵C使得AC-CA=B?并求所有矩阵C.
有以下程序:#include<stdio.h>intfun(intx,inty){if(x==y)return(x);elsereturn((x+y)/2);}main(){
最新回复
(
0
)