首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设a1,a2,…,an是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2019-05-11
51
问题
设a
1
,a
2
,…,a
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性: a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此(a
1
,a
2
,…,a
n
)=n。对任一n维向量b,因为a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关。 综上所述r(a
1
,a
2
,…,a
n
,b)=n。 又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示。 充分性: 已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组:ξ
1
,ξ
2
,…,ξ
n
可由a
1
,a
2
,…,a
n
线性表示,即 r(ξ
1
,ξ
2
,…,ξ
n
)=n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组凡维向量,有r(a
1
,a
2
,…,a
n
)≤n。 综上,r(a
1
,a
2
,…,a
n
)=n。所以a
1
,a
2
,…,a
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/B8V4777K
0
考研数学二
相关试题推荐
证明:r(A)=r(ATA).
a,b取何值时,方程组有解?
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为ξ1=.属于特征值λ2=λ3=2的特征向量为ξ2=,求属于λ2=λ3=2的另一个特征向量.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设A=,求A的特征值,并证明A不可以对角化.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
把二重积(χ,y)dχdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线χ+y=1,χ=1,y=1围成.
微分方程y’’-y=ex+1的一个特解应具有形式(式中a,b为常数)().
随机试题
(2013年4月)1947年正式提出“打倒蒋介石,解放全中国”的行动口号是在________发表的宣言。
简述投保人的概念及其应具备的条件。
初治肺结核的描述哪项是正确的
人造木板用于吊顶工程时必须复验的项目是:[2010年第61题]
某啤酒生产线扩建项目,位于原厂区西面100m的空地上,某国道从厂区北侧通过,距公路500m,距火车站26km,当地地形以山地高原为主,平原、绿洲、荒漠东西展开,南北更替,地势由西南向东北渐趋倾斜,当地地表水比较发达,地下水资源丰富。自然土壤由高山寒漠土、高
社区工作的具体目标有( )。
给定资料1.2014年3月5日,李克强总理在政府工作报告中指出,2014年将进一步推进教育发展和改革,使贫困地区农村学生上重点高校人数再增长10%以上,让更多农家子弟有升学机会。扶持农村教育始终是政府工作的重点。根据报告,2013年我国
下列哪一诗句描述的节日与其他三句不同?
2012年新修改的民事诉讼法增加了对公益诉讼制度的规定,这是环境公益诉讼在程序法方面的进步,但仍然缺少具体规定来________。而在司法实践中,由于相关法律条文的缺失,导致法院不受理环保诉讼的情况________。
A.牙龈切除术B.牙周翻瓣术C.引导性组织再生术D.截龈术E.牙冠延长术基础治疗后增生的牙龈未消退,应采取的牙周手术为()。
最新回复
(
0
)