首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是( ).
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是( ).
admin
2022-04-02
64
问题
若向量组α
1
,α
2
,α
3
,α
4
线性相关,且向量α
4
不可由向量组α
1
,α
2
,α
3
线性表示,则下列结论正确的是( ).
选项
A、α
1
,α
2
,α
3
线性无关
B、α
1
,α
2
,α
3
线性相关
C、α
1
,α
2
,α
4
线性无关
D、α
1
,α
2
,α
4
线性相关
答案
B
解析
若α
1
,α
2
,α
3
线性无关,因为α
4
不可由α
1
,α
2
,α
3
线性表示,所以α
1
,α
2
,α
3
,α
4
线性无关,矛盾,故α
1
,α
2
,α
3
线性相关,选(B).
转载请注明原文地址:https://kaotiyun.com/show/42R4777K
0
考研数学三
相关试题推荐
设α,β为四维非零的正交向量,且A=αβT,则A的线性无关的特征向量个数为().
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
设三角形三边的长分别为a,b,c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
试证明函数在区间(0,+∞)内单调增加.
已知方程组有解,证明方程组无解.
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xfˊ(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A的特征值和特征向量.
随机试题
社会主义道德建设与社会主义法律规范相协调。
A.呼吸深而大,带烂苹果味B.向心性肥胖,痤疮,高血压等C.足部疼痛,皮肤溃疡和肢端坏疽D.甲状腺肿大,震颤,有杂音E.饥饿感,心慌,手颤酮症酸中毒患者的特点是
融资方案分析,从资金结构、融资成本及融资风险等各个侧面对初步融资方案进行分析,结合(),比较、选择、确定拟建项目的融资方案。
中国工程咨询协会属于()行业性社团组织。
进口口岸栏应填______。保费栏目应填______。
在一项行为实验中,教师把一个大盒子放到幼儿面前,对幼儿说:“这里面有一个很好玩的玩具,一会儿我们一起玩,现在我要出去一下,你们等我回来,我回来前,你们不能打开盒子看,好吗?”幼儿回答:“好的!”教师把幼儿单独留在房间里,下面是两名幼儿在接下来的两分钟独处时
下面是一教师在执教《鼎湖山听泉》的教学实录的节选片段,请你抓住这段实录的特点,运用语文新课程概念,写一段300字以上的评析文字。【教学片段】(一)学习课文第二节:过渡:就让我们跟上作者的脚步去看一看那清亮的泉水,听一听那美好的泉声。
市场经济以自愿交易为基础,交易即产权的交换,交易顺利完成的前提是产权的界定和保护。若无产权保护,市场就可能变成战场,侵占将取代互利,成为配置资源的主要方式。若想防止暴力地配置资源,社会必须保护产权和保证契约的进行,这就需要一个完整的法律体系,法律的作用是惩
Pleasegiveusthereason______thegoodsweredelayed.
A、Tointereststudentsinacareerincounseling.B、Torecruitcounselorstoworkintheplacementoffice.C、Toinformstudents
最新回复
(
0
)