首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系, β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1αs+t2α1, 其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系, β1=t1α1+t2α2,β2=t1α2+t2α3,…,β3=t1αs+t2α1, 其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
admin
2019-08-06
100
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,
β
1
=t
1
α
1
+t
2
α
2
,β
2
=t
1
α
2
+t
2
α
3
,…,β
3
=t
1
α
s
+t
2
α
1
,
其中t
1
,t
2
为实常数。试问t
1
,t
2
满足什么条件时,β
1
,β
2
,…,β
s
也为Ax=0的一个基础解系。
选项
答案
因为β
i
(i=1,2,…,s)是α
1
,α
2
,…,α
s
的线性组合,且α
1
,α
2
,…,α
i
是Ax=0的解,所以根据齐次线性方程组解的性质知β
i
(i=1,2,…,s)均为Ax=0的解。 从α
1
,α
2
,…,α
s
是Ax=0的基础解系知s=n—r(A)。 以下分析β
1
,β
2
,…,β
s
线性无关的条件: 设k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,即 (t
1
k
1
+t
2
k
s
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+…+(t
2
k
s-1
+t
1
k
s
)α
s
=0, 由于α
1
,α
2
,…,α
s
线性无关,所以 [*] 又因系数矩阵的行列式 [*]=t
1
s
+(一1)
s+1
t
2
s
, 当t
t
s
+(一1)
s+1
t
2
s
≠0时,方程组只有零解k
1
=k
2
=…=k
s
=0。因此当s为偶数且t
1
≠±t
2
,或 当s为奇数且t
1
≠一t
2
时,β
1
,β
2
,…,β
s
线性无关,为Ax=0的一个基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/twJ4777K
0
考研数学三
相关试题推荐
设方程组AX=B有解但不唯一.求a;
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设有方程组Ax=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4
求幂级数
设an=∫01x2(1一x)ndx,讨论级数的敛散性,若收敛求其和.
设f(x)是非负随机变量的概率密度,求Y=的概率密度.
设X1,X2,…,Xn是取自总体X的一个简单随机样本,EX=μ,DX=σ.记Y1=X1+…+X8,Y2=X5+…+X12,求Y1与Y2的相关系数.
求下列函数的带皮亚诺余项的麦克劳林公式:f(x)=;
判别下列级数的敛散性.若收敛,需说明是绝对收敛还是条件收敛.
随机试题
如果各并发进程对共享变量的访问是互斥的,那么就不会发生与_______有关的错误。
患者,男,62岁。胸闷刺痛,痛有定处,恶心呕吐,口中黏腻,头晕目眩,心悸气短,面部暗青,舌紫暗苔白腻,脉弦滑。其治法是
关于一维固结理论,下列说法错误的是()。
符合个体工商户扣除费用规定的有( )。
下面()不是计算机局域网的主要特点。
抗税罪的行为方式有()。
完成以下数列:3,10,31,94,()。
上世纪80年代初中国提出了“蓝色革命”的新构想,其科学含义是( )。
进行唇颊沟加深术的目的是()。
Wecanconcludefromthepassagethatthescientificmeansforrecyclingsolidwaste______.Whatisthebesttitleforthepass
最新回复
(
0
)