首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n为正整数,F(x)=∫1nxe-t3dt+∫ee(n+1)xdt. (I)证明对于给定的n,F(x)有且仅有1个(实)零点,并且是正的,记该零点为an; (Ⅱ)证明{an}随n的增加而严格单调减少且=0.
设n为正整数,F(x)=∫1nxe-t3dt+∫ee(n+1)xdt. (I)证明对于给定的n,F(x)有且仅有1个(实)零点,并且是正的,记该零点为an; (Ⅱ)证明{an}随n的增加而严格单调减少且=0.
admin
2018-12-21
93
问题
设n为正整数,F(x)=∫
1
nx
e
-t
3
dt+∫
e
e
(n+1)x
dt.
(I)证明对于给定的n,F(x)有且仅有1个(实)零点,并且是正的,记该零点为a
n
;
(Ⅱ)证明{a
n
}随n的增加而严格单调减少且
=0.
选项
答案
(I)[*] 所以对于给定的n,F(x)有且仅有一个(实)零点,记为a
n
,并且 [*] 所以{a
n
}随n的增加而严格单调减少且[*]=0.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Aj4777K
0
考研数学二
相关试题推荐
(2010年)设A为4阶实对称矩阵,且A2+A=O.若A的秩为3,则A相似于【】
(2008年)曲线sin(χy)+ln(y-χ)=χ在点(0,1)处的切线方程是_______.
(2012年)设A为3阶矩阵,|A|=3,A*为A的佯随矩阵,若交换A的第1行与第2行得矩阵B,则|BA*|=_______.
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
(2012年)证明:χln(-1<χ<1).
(1987年)求(a,b是不全为零的非负常数).
A=,已知r(A*)+r(A)=3,求a,b应该满足的关系.
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1).(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
已知A是3阶不可逆矩阵,-1和2是A的特征值,B=A2-A-2E,求B的特征值,并问B能否相似对角化,并说明理由.
下列函数在给定区间上是否满足拉格朗日定理的所有条件?如满足,请求出定理中的数值ε(1)f(x)=x3[0,a]a>0(2)f(x)=lnx[1,2](3)f(x)=x3-5x2+x-2[-1,0]
随机试题
臀小肌收缩时可以外展髋关节。()
中国新民主主义革命的主要形式是
男,38岁,左髋关节疼痛跛行1年半,经治疗无明显好转,双髋关节正位片摄片如图所示,最可能诊断是
患者,男性,45岁,因间断胸闷1周,1天前于夜间突然被迫坐起,频繁咳嗽,严重气急,咳大量粉红色泡沫痰,既往患冠心病10年。该患者首先考虑的诊断是()。
材料净用量的确定方法,不包括()
银行业从业人员应当具备岗位所需的专业知识、资格和能力是()准则。
国家赔偿以()为主要方式。
战略关系
CIF视频格式的图像分辨率为______。
Ican’tstandaroundchatting—I’vegot______thingstodothismorning.
最新回复
(
0
)