首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2014年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明: (Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b] (Ⅱ)f(χ)dχ≤∫abf(χ)dχ.
(2014年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明: (Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b] (Ⅱ)f(χ)dχ≤∫abf(χ)dχ.
admin
2016-05-30
101
问题
(2014年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:
(Ⅰ)0≤∫
a
χ
g(t)dt≤(χ-a),χ∈[a,b]
(Ⅱ)
f(χ)dχ≤∫
a
b
f(χ)dχ.
选项
答案
(Ⅰ)由0≤g(∮χ)≤1得 0≤∫
0
χ
g(t)dt≤∫
0
χ
1dt=(χ-a) χ∈[a,b] (Ⅱ)令F(u)=∫
a
u
f(χ)g(χ)-[*]f(χ)dχ 只要证明F(b)≥0,显然F(a)=0,只要证明F(u)单调增,又 F′(u)=f(u)g(u)-f(a+∫
a
u
g(t)dt)g(u) =g(u)[f(u)-f(a+∫
a
u
g(t)dt)] 由(Ⅰ)的结论0≤∫
a
χ
g(t)dt≤(χ-a)知,a≤a+∫
a
χ
g(t)dt≤χ,即 a≤a+∫
a
u
g(t)dt≤u 又f(χ)单调增加,则f(u)≥f(a+∫
a
u
g(t)dt),因此,F′(u)≥0,F(b)≥0. 故[*]f(χ)dχ≤∫
a
b
f(χ)g(χ)dχ.
解析
转载请注明原文地址:https://kaotiyun.com/show/0K34777K
0
考研数学二
相关试题推荐
矩阵与()相似.
设A,B为三阶矩阵,A~B,λ1=-1,λ2=1为矩阵A的两个特征值,又|B-1|=则=________
(Ⅰ)设n维向量α1,α2,α3,α4线性无关.βi=αi+tα4(i=1,2,3),证明:β1,β2,β3对任意t都线性无关;(Ⅱ)设n维向量α1,α2,α3,α4满足=0,βi=αi+iλiξ,i=1,2,3,4,问λi(i=1,2,3,4)
设生产某产品的固定成本为10,而当产量为x时的边际成本函数为MC=-40-20x+3x2,边际收益函数为MR=32+10x,则总利润函数L(x)=________.
设f(x)在x=0的某邻域内有定义,则g(x)=f(x)·|x|在x=0处可导的充要条件是()
用恒等变形法或提公因式法化简极限函数,再用等价无穷小代换求出结果.[*]
设有密度为u=1的均匀正方体V:0≤x≤a,0≤y≤a,0≤z≤a,设直线L过坐标原点且方向向量s的方向余弦为cosα,cosβ,cosγ,求V对L的转动惯量,并求当{cosα,cosβ,cosγ}满足什么条件时,此转动惯量有最大、最小值.
求常数项级数的和:
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则
(2003年)设f(χ)为不恒等于零的奇函数,且f′(0)存在,则函数g(χ)=
随机试题
需要桥接两条曲线间的一段空隙,结果既要保证相切也要跟随先前两条曲线的总体形状。应该选择下面哪一种连续的方法?
A.100级B.1000级C.10000级D.100000级E.300000级《药品生产质量管理规范》附录规定供角膜创伤或手术用滴眼剂的配制和灌装的洁净区洁净级别应为
王先生,70岁。高血压史30年。于家中如厕时突感头晕,随即倒地而送至医院,诊断为脑出血。体检:昏迷,左侧偏瘫,血压为25.3/14.6kPa(190/110mmHg)。护士为保持王先生安静卧床,护理动作轻柔,其目的是
该工程还有哪些安全风险源未被辨识?对此应制定哪些控制措施?针对本工程,安全验收应包含哪些项目?
适用海关A类管理的加工贸易企业进口的78种客供辅料,且总价不超过()的,可以不设立银行保证金台账,甚至不申领《登记手册》。
在对财务报表审计完成后,注册会计师应以适当方式与治理层沟通。()
假定你是李薇,在一位名叫TigerMom的学生家长的博客上,你看到如下内容。请根据博客内容、写作要点和要求,给这位家长回复。I’mthemotherofafourteen-year-old.Ihavearuleformy
国家政治保卫局于()建立。
Doyouwanttoliveforever?Bytheyear2050,youmightactuallygetyourwish—providingyouarewillingtoleaveyourbiolog
Anewpartnerpushesouttwoclosefriendsonaverage,leavingloverswithasmallerinnercircleofpeopletheycanturntoin
最新回复
(
0
)